CHƯƠNG 1. BIỂU THỨC ĐẠI SỐ
Bài 1. Đơn thức và đa thức nhiều biến
Bài 2. Các phép toán với đa thức nhiều biến
Bài 3. Hằng đẳng thức đáng nhớ
Bài 4. Phân tích đa thức thành nhân tử
Bài 5. Phân thức đại số
Bài 6. Cộng, trừ phân thức
Bài 7. Nhân, chia phân thức
Bài tập cuối chương 1
CHƯƠNG 3. ĐỊNH LÍ PYTHAGORE. CÁC LOẠI TỨ GIÁC THƯỜNG GẶP
Bài 1. Định lí Pythagore
Bài 2. Tứ giác
Bài 3. Hình thang - Hình thang cân
Bài 4. Hình bình hành - Hình thoi
Bài 5. Hình chữ nhật - Hình vuông
Bài tập cuối chương 3
CHƯƠNG 5. HÀM SỐ VÀ ĐỒ THỊ

Trắc nghiệm Tính giá trị biểu thức Toán 8 có đáp án

Trắc nghiệm Tính giá trị biểu thức

25 câu hỏi
Trắc nghiệm
Câu 1 :

Cho biết \({99^2} = {a^2} - 2ab + {b^2}\)  với \(a,\,b \in \mathbb{R}\) . Khi đó

  • A.
    \(a = 98,\,b = 1\) .
  • B.
    \(a = 100,\,b = 1\) .
  • C.
    \(a = 100,\,b =  - 1\) .
  • D.

    \(a = - 98,\,b =  1\) .

Câu 2 :

Viết \({101^2} - {99^2}\)  dưới dạng tích hoặc bình phương của một tổng (hiệu).

  • A.
    \({\left( {101 - 99} \right)^2}\) .
  • B.
    \(\left( {101 - 99} \right)\left( {101 + 99} \right)\) .
  • C.
    \({\left( {101 + 99} \right)^2}\) .
  • D.
    \({\left( {99 - 101} \right)^2}\) .
Câu 3 :

Cho \(M = \frac{{{{\left( {x + 5} \right)}^2} + {{\left( {x - 5} \right)}^2}}}{{{x^2} + 25}}; N = \frac{{{{\left( {2x + 5} \right)}^2} + {{\left( {5x - 2} \right)}^2}}}{{{x^2} + 1}}\) . Tìm mối quan hệ giữa \(M, N\) ?

  • A.
    \(N = 14M - 1\) .
  • B.
    \(N = 14M\) .
  • C.
    \(N = 14M + 1\) .
  • D.
    \(N = 14M - 2\) .
Câu 4 :

Cho biểu thức \(T = {x^2} + 20x + 101\) . Khi đó

  • A.
    \(T \le 1\) .
  • B.
    \(T \le 101\) .
  • C.
    \(T \ge 1\) .
  • D.
    \(T \ge 100\) .
Câu 5 :

Cho biểu thức \(\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\) . Giá trị của biểu thức \(\;N\) khi \(\;x = 1001\) là

  • A.
    \(\;1001\) .
  • B.
    \(\;1\) .
  • C.
    \(\; - 34\) .
  • D.
    \(\;20\) .
Câu 6 :

Giá trị lớn nhất của biểu thức \(\;Q = 8-8x-{x^2}\) là

  • A.
    \(4\) .
  • B.
    \( - 4\) .
  • C.
    \(24\) .
  • D.
    \(\; - 24\) .
Câu 7 :

Cho biểu thức \(M = {79^2} + {77^2} + {75^2} + ... + {3^2} + {1^2}\) và \(N = {78^2} + {76^2} + {74^2} + ... + {4^2} + {2^2}\) . Tính giá trị của biểu thức \(\frac{{M - N}}{2}\) .

  • A.
    \(1508\) .
  • B.
    \(3160\) .
  • C.
    \(1580\) .
  • D.
    \(3601\) .
Câu 8 :

Cho đẳng thức \({\left( {a + b + c} \right)^2} = 3\left( {ab + bc + ca} \right)\) . Khi đó

  • A.
    \(a = - b = - c\) .
  • B.
    \(a = b = \frac{c}{2}\) .
  • C.
    \(a = b = c\) .
  • D.
    \(a = 2b = 3c\) .
Câu 9 :

Giá trị nhỏ nhất của biểu thức \(T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\) là

  • A.
    \(4\) .
  • B.
    \(3\) .
  • C.
    \(2\) .
  • D.
    \(5\) .
Câu 10 :

Tính nhanh: \({23^3} - {9.23^2} + 27.23 - 27\).

  • A.
    \(4000\).
  • B.
    \(8000\).
  • C.
    \(6000\).
  • D.
    \(2000\).
Câu 11 :

Giá trị của biểu thức \({x^3}\;-6{x^2}y + 12x{y^2}\;-8{y^3}\;\)tại \(x = 2021\) và \(y = 1010\) là

  • A.
    \( - 1\).
  • B.
    \(1\).
  • C.
    \(0\).
  • D.
    \( - 2\).
Câu 12 :

Tính giá trị của biểu thức \(M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\) tại\(x = 20;\,y = 1\) .

  • A.
    \(4000\).
  • B.
    \(6000\).
  • C.
    \(8000\).
  • D.
    \(2000\).
Câu 13 :

Cho \(\;2x-y = 9\). Giá trị của biểu thức

\(\;A = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) là

  • A.
    \(A = 1001\).
  • B.
    \(A = 1000\).
  • C.
    \(A = 1010\).
  • D.
    \(A = 900\).
Câu 14 :

Giá trị của biểu thức \(Q = {a^3} - {b^3}\) biết \(a - b = 4\) và \(ab =  - 3\) là

  • A.
    \(Q = 100\).
  • B.
    \(Q = 64\).
  • C.
    \(Q = 28\).
  • D.
    \(Q = 36\).
Câu 15 :

Cho \(\;a + b + c = 0\). Giá trị của biểu thức \(\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\) là

  • A.
    \(B = 0\).
  • B.
    \(B = 1\).
  • C.
    \(B =  - 1\).
  • D.
    Không xác định được.
Câu 16 :

Giá trị của biểu thức \(125 + (x - 5)({x^2} + 5x + 25)\) với x = -5 là

  • A.
    \(125\).
  • B.
    \( - 125\).
  • C.
    \(250\).
  • D.
    \( - 250\).
Câu 17 :

Cho \(x + y = 1\). Tính giá trị biểu thức \(A = {x^3} + 3xy + {y^3}\)

  • A.
    \( - 1\).
  • B.
    \(0\).
  • C.
    \(1\).
  • D.
    \(3xy\).
Câu 18 :

Cho x – y = 2. Tính giá trị biểu thức \(A = {x^3} - 6xy - {y^3}\)

  • A.
    \(0\).
  • B.
    \(2\).
  • C.
    \(4\).
  • D.
    \(8\).
Câu 19 :

Cho \(A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\). Khi đó

  • A.
    A chia hết cho 12 và 5.
  • B.
    A không chia hết cho cả 12 và 5.
  • C.
    A chia hết cho 12 nhưng không chia hết cho 5.
  • D.
    A chia hết cho 5 nhưng không chia hết cho 12.
Câu 20 :

Cho \(a,b,m\) và \(n\) thỏa mãn các đẳng thức: \(a + b = m\) và \(a - b = n\). Giá trị của biểu thức \(A = {a^3} + {b^3}\) theo m và n.

  • A.
    \(A = \frac{{{m^3}}}{4}\).
  • B.
    \(A = \frac{1}{4}m(5{n^2} + {m^2})\).
  • C.
    \(A = \frac{1}{4}m(3{n^2} + {m^2})\).
  • D.
    \(A = \frac{1}{4}m(3{n^2} - {m^2})\).
Câu 21 :

Cho \(x,y,a\) và \(b\) thỏa mãn các đẳng thức: \(x - y = a - b\,\,\,(1)\) và \({x^2} + {y^2} = {a^2} + {b^2}\,\,\,(2)\). Biểu thức \({x^3} - {y^3} = ?\)

  • A.
    \((a - b)({a^2} + {b^2})\).
  • B.
    \({a^3} - {b^3}\).
  • C.
    \({(a - b)^3}\).
  • D.
    \({(a - b)^2}({a^2} + {b^2})\).
Câu 22 :

Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \({a^3} + {b^3} + {c^3} - 3abc\) là:

  • A.
    \(0\).
  • B.
    \(1\).
  • C.
    \( - 3abc\).
  • D.
    \({a^3} + {b^3} + {c^3}\)
Câu 23 :

Giá trị của biểu thức \(N = (2x - 2)({x^2} + x + 1) - \left( {x - 1} \right)\left( {x + 1} \right)\) tại x = 10 

  • A.
    1899
  • B.

    1891

  • C.

    1991

  • D.

    2001

Câu 24 :

Tính giá trị biểu thức \(A = 8{x^3} + 12{x^2} + 6x + 1\) tại \(x = 9,5\) .

  • A.
     20. 
  • B.

     400

  • C.

     4000

  • D.

     8000

Câu 25 :

Kết quả của phép tính \({72^2} + {22^2} - 44.72\) là:

  • A.

    784.

  • B.

    250.

  • C.

    2500.

  • D.

    8836.