CHƯƠNG 1. BIỂU THỨC ĐẠI SỐ
Bài 1. Đơn thức và đa thức nhiều biến
Bài 2. Các phép toán với đa thức nhiều biến
Bài 3. Hằng đẳng thức đáng nhớ
Bài 4. Phân tích đa thức thành nhân tử
Bài 5. Phân thức đại số
Bài 6. Cộng, trừ phân thức
Bài 7. Nhân, chia phân thức
Bài tập cuối chương 1
CHƯƠNG 3. ĐỊNH LÍ PYTHAGORE. CÁC LOẠI TỨ GIÁC THƯỜNG GẶP
Bài 1. Định lí Pythagore
Bài 2. Tứ giác
Bài 3. Hình thang - Hình thang cân
Bài 4. Hình bình hành - Hình thoi
Bài 5. Hình chữ nhật - Hình vuông
Bài tập cuối chương 3
CHƯƠNG 5. HÀM SỐ VÀ ĐỒ THỊ

Trắc nghiệm Rút gọn biểu thức Toán 8 có đáp án

Trắc nghiệm Rút gọn biểu thức

16 câu hỏi
Trắc nghiệm
Câu 1 :

Rút gọn biểu thức \(P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\)  ta được

  • A.
    \(P = 1\) .
  • B.
    \(P =  - 15x + 1\) .
  • C.
    \(P =  - 1\) .
  • D.
    \(P = 15x + 1\) .
Câu 2 :

Rút gọn biểu thức\(\;M = 4{\left( {x + 1} \right)^2}\; + \;{\left( {2x + 1} \right)^2}\;-8\left( {x-1} \right)\left( {x + 1} \right)-12x\) ta được

  • A.
    Một số chẵn.
  • B.
    Một số chính phương.
  • C.
    Một số nguyên tố.
  • D.
    Một hợp số.
Câu 3 :

Cho biểu thức \(H = \left( {x + 5} \right)({x^2}\;-5x + 25)-{\left( {2x + 1} \right)^3}\; + 7{\left( {x-1} \right)^3}\;-3x\left( { - 11x + 5} \right)\). Khi đó

  • A.
    \(H\) là một số chia hết cho 12.
  • B.
    \(H\) là một số chẵn.
  • C.
    \(H\) là một số lẻ.
  • D.
    \(H\) là một số chính phương.
Câu 4 :

Cho hai biểu thức \(P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)\left( {16{x^2}\; + 3} \right)\); \(Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\).

Tìm mối quan hệ giữa hai biểu thức \(P,\,Q\)?

  • A.
    \(P =  - Q\).
  • B.
    \(P = 2Q\).
  • C.
    \(P = Q\).
  • D.
    \(P = \frac{1}{2}Q\).
Câu 5 :

Rút gọn biểu thức  \(P = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) ta được

  • A.

    \(P = \;{\left( {2x-y-1} \right)^3}\; + 10\).

  • B.

    \(P = \;{\left( {2x{\rm{  +  }}y-1} \right)^3}\; + 10\).

  • C.

    \(P = \;{\left( {2x-y{\rm{  +  }}1} \right)^3}\; + 10\).

  • D.

    \(P = \;{\left( {2x-y-1} \right)^3}\; - 10\).

Câu 6 :

Cho biết \(Q = {\left( {2x-{\rm{ 1}}} \right)^3}\;-{\rm{ 8}}x\left( {x + 1} \right)\left( {x-1} \right) + {\rm{ 2}}x\left( {6x - 5} \right) = ax - b\,\,\left( {a,\,b \in \mathbb{Z}} \right)\). Khi đó

  • A.
    \(a =  - 4;\,b = 1\).
  • B.
    \(a = 4;\,b =  - 1\).
  • C.
    \(a = 4;\,b = 1\).
  • D.
    \(a =  - 4;\,b =  - 1\).
Câu 7 :

Cho hai biểu thức

\(\;P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)(16{x^2}\; + 3);\,\,Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\). So sánh \(P\) và \(Q\)?

  • A.
    \(P < Q\).
  • B.
    \(P =  - Q\).
  • C.
    \(P = Q\).
  • D.
    \(P > Q\).
Câu 8 :

Rút gọn biểu thức \(A = {x^3} + 12 - (x + 2)\left( {{x^2} - 2x + 4} \right)\) ta được giá trị của A là

  • A.
    một số nguyên tố.
  • B.
    một số chính phương.
  • C.
    một số chia hết cho 3.
  • D.
    một số chia hết cho 5.
Câu 9 :

Thực hiện phép tính \({(x + y)^3} - {\left( {x - 2y} \right)^3}\)

  • A.
    \(9{x^2}y - 9x{y^2} + 9{y^3}\).
  • B.
    \(9{x^2}y - 9xy + 9{y^3}\).
  • C.
    \(9{x^2}y - 9x{y^2} + 9y\).
  • D.
    \(9xy - 9x{y^2} + 9{y^3}\).
Câu 10 :

Rút gọn biểu thức \(\left( {a - b + 1} \right)\left[ {{a^2} + {b^2} + ab - (a + 2b) + 1} \right] - ({a^3} + 1)\)

  • A.
    \({(1 + b)^3} - 1\).
  • B.
    \({(1 + b)^3} + 1\).
  • C.
    \({(1 - b)^3} - 1\).
  • D.
    \({(1 - b)^3} + 1\).
Câu 11 :

Rút gọn biểu thức \({\left( {x - y} \right)^{3\;}} + \left( {x - y} \right)({x^{2\;}} + xy + {y^2}) + 3({x^2}y - x{y^2})\)

  • A.
    \({x^3} - {y^3}\).
  • B.
    \({x^3} + {y^3}\).
  • C.
    \(2{x^3} - 2{y^3}\).
  • D.
    \(2{x^3} + 2{y^3}\).
Câu 12 :

Rút gọn biểu thức \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\) ta được:

  • A.

    5

  • B.

    4

  • C.

    3

  • D.

    -3

Câu 13 :

Biểu thức \(\left( {3x + y} \right)\left( {y - 3x} \right)\) bằng

  • A.

    \(27{x^3} + {y^3}\).

  • B.

    \({y^2} - 9{x^2}\).

  • C.

    \(9{x^2} - {y^2}\).

  • D.

    \(27{x^3} - 9x{y^2} + {y^3}\).

Câu 14 :

Kết quả của biểu thức \({\left( {x + 2} \right)^2} - 4\left( {x + 2} \right) + 4\) là

  • A.

    \({x^2} + 16\).

  • B.

    \({x^2} + 8x + 16\).

  • C.

    \({x^2} - 4x\).

  • D.

    \({x^2}\).

Câu 15 :

Kết quả của biểu thức \({\left( {x - 5} \right)^2} - {\left( {x + 5} \right)^2}\) là

  • A.

    \( - 20x\).

  • B.

    \(50\).

  • C.

    \(20x\).

  • D.

    \(2{x^2} + 50\).

Câu 16 :

Kết quả rút gọn biểu thức \(2{\left( {x + y} \right)^2} - {\left( {x - y} \right)^2}\) là

  • A.

    \({x^2} + 6xy + {y^2}\).

  • B.

    \({x^2} + {y^2}\).

  • C.

    \(2{x^2} + 2xy + {y^2}\).

  • D.

    \({x^2} + 6xy\).