CHƯƠNG 1. BIỂU THỨC ĐẠI SỐ
Bài 1. Đơn thức và đa thức nhiều biến
Bài 2. Các phép toán với đa thức nhiều biến
Bài 3. Hằng đẳng thức đáng nhớ
Bài 4. Phân tích đa thức thành nhân tử
Bài 5. Phân thức đại số
Bài 6. Cộng, trừ phân thức
Bài 7. Nhân, chia phân thức
Bài tập cuối chương 1
CHƯƠNG 3. ĐỊNH LÍ PYTHAGORE. CÁC LOẠI TỨ GIÁC THƯỜNG GẶP
Bài 1. Định lí Pythagore
Bài 2. Tứ giác
Bài 3. Hình thang - Hình thang cân
Bài 4. Hình bình hành - Hình thoi
Bài 5. Hình chữ nhật - Hình vuông
Bài tập cuối chương 3
CHƯƠNG 5. HÀM SỐ VÀ ĐỒ THỊ

Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức Toán 8 có đáp án

Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức

16 câu hỏi
Trắc nghiệm
Câu 1 :

Tìm x, biết \(2 - 25{x^2} = 0\)

  • A.
    \(x = \frac{{\sqrt 2 }}{5}\).
  • B.
    \(x = \frac{{ - \sqrt 2 }}{5}\).
  • C.
    \(\frac{2}{{25}}\).
  • D.
    \(x = \frac{{\sqrt 2 }}{5}\)  hoặc \(x = \frac{{ - \sqrt 2 }}{5}\).
Câu 2 :

Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)

  • A.
    \({x^2} + 1\).
  • B.
    \({(x + 1)^2}\).
  • C.
    \({x^2} - 1\).
  • D.
    \({x^2} + x + 1\).
Câu 3 :

Chọn câu sai.

  • A.
    \({x^2} - 6x + 9 = {(x - 3)^2}\).
  • B.
    \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{4} + 2y} \right)^2}\).
  • C.
    \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\).
  • D.
    \(4{x^2} - 4xy + {y^2} = {(2x - y)^2}\).
Câu 4 :

Tính nhanh \(B = 5.101,5 - 50.0,15\)

  • A.
    \(100\).
  • B.
    \(50\).
  • C.
    \(500\).
  • D.
    \(1000\).
Câu 5 :

Đa thức \(4{b^2}{c^2}-{\left( {{c^2} + {b^2}-{a^2}} \right)^2}\) được phân tích thành

  • A.
    \(\left( {b + c + a} \right)\left( {b + c-a} \right)\left( {a + b-c} \right)\left( {a-b + c} \right)\)
  • B.
    \(\left( {b + c + a} \right)\left( {b-c-a} \right)\left( {a + b-c} \right)\left( {a-b + c} \right)\)
  • C.
    \(\left( {b + c + a} \right)\left( {b + c-a} \right){\left( {a + b-c} \right)^2}\)
  • D.
    \(\left( {b + c + a} \right)\left( {b + c-a} \right)\left( {a + b-c} \right)\left( {a-b-c} \right)\)
Câu 6 :

Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)

  • A.
    \((x + 3)(x - 3)\).
  • B.
    \((x - 1)(x + 9)\).
  • C.
    \({(x + 3)^2}\).
  • D.
    \((x + 6)(x - 3)\).
Câu 7 :

Tìm x, biết \(2 - 25{x^2} = 0\)

  • A.
    \(x = \frac{{\sqrt 2 }}{5}\).
  • B.
    \(x = \frac{{ - \sqrt 2 }}{5}\).
  • C.
    \(\frac{2}{{25}}\).
  • D.
    \(x = \frac{{\sqrt 2 }}{5}\)  hoặc \(x = \frac{{ - \sqrt 2 }}{5}\).
Câu 8 :

Đa thức \({x^6}-{y^6}\) được phân tích thành

  • A.
    \({\left( {x + y} \right)^2}({x^2}\;-xy + {y^2})({x^2}\; + xy + {y^2})\)
  • B.

    \(\left( {x + y} \right)({x^2}\; - xy + {y^2})\left( {y-x} \right)({x^2}\; + xy + {y^2})\).

  • C.
    \({\left( {x + y} \right)^2}({x^2}\;-xy + {y^2})({x^2}\; + xy + {y^2})\)
  • D.

    \(\left( {x + y} \right)({x^2}\; - xy + {y^2})\left( {x - y} \right)({x^2}\; + xy + {y^2})\).

Câu 9 :

Tính nhanh biểu thức \({37^2} - {13^2}\)

  • A.
    \(1200\).
  • B.
    \(800\).
  • C.
    \(1500\).
  • D.
    \(1800\).
Câu 10 :

Chọn câu sai.

  • A.
    \({x^2} - 6x + 9 = {(x - 3)^2}\).
  • B.
    \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{4} + 2y} \right)^2}\).
  • C.
    \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\).
  • D.
    \(4{x^2} - 4xy + {y^2} = {(2x - y)^2}\).
Câu 11 :

Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng

  • A.
    \(m >  - 59\).
  • B.
    \(m < 0\).
  • C.
    \(m \vdots 9\).
  • D.
    \(m\) là số nguyên tố.
Câu 12 :

Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

  • A.
    \(\frac{m}{n} = 36\).
  • B.
    \(\frac{m}{n} =  - 36\).
  • C.
    \(\frac{m}{n} = 18\).
  • D.
    \(\frac{m}{n} =  - 18\).
Câu 13 :

Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

  • A.
    7.
  • B.
    8.
  • C.
    9.
  • D.
    10.
Câu 14 :

Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

  • A.
    \(2\).
  • B.
    \(1\).
  • C.
    \(0\).
  • D.
    \(4\).
Câu 15 :

Gọi\({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó\({x_1}\; + {x_2}\; + {x_3}\) bằng

  • A.
    \( - 3\).
  • B.
    \( - 1\).
  • C.
    \(\frac{{ - 5}}{3}\).
  • D.
    \(1\).
Câu 16 :

Với a3 + b3 + c3 = 3abc thì

  • A.
    \(a = b = c\).
  • B.
    \(a + b + c = 1\).
  • C.
    \(a = b = c\) hoặc \(a + b + c = 0\).
  • D.
    \(a = b = c\) hoặc \(a + b + c = 1\).