Tìm \(x\) biết \(\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9\)
Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {3x - 4} \right)^2} - {\left( {2x - 1} \right)^2} = 0\) .
Cho biết \({\left( {3x-1} \right)^2}\; + 2{\left( {x + 3} \right)^2}\; + 11\left( {1 + x} \right)\left( {1-x} \right) = ax + b\) . Khi đó
Biết giá trị \(x = a \left( {a > 0} \right)\) thỏa mãn biểu thức \(\;{\left( {2x + 1} \right)^2}\;-{\left( {x + {{ 5}}} \right)^2}\; = 0\) , bội của \(a\) là
Cho cặp số \(\left( {x;y} \right)\) để biểu thức \({{P }} = {x^2}-8x + {y^2} + 2y + 5\) có giá trị nhỏ nhất. Khi đó tổng \(x + 2y\) bằng
Giá trị nhỏ nhất của biểu thức \(A = {\left( {3x - 1} \right)^2} + {\left( {3x + 1} \right)^2} + 2\left( {9{x^2} + 7} \right)\) đạt tại \(x = b\) . Khi đó, căn bậc hai số học của \(b\) là
Cho \(A + \frac{3}{4}{x^2} - \frac{3}{2}x + 1 = {\left( {B + 1} \right)^3}\). Khi đó
Tìm \(x\) biết \({x^3}\;-12{x^2}\; + 48x-64 = 0\)
Biết giá trị \(x = a\,\,\) thỏa mãn biểu thức \(\;{(x + 1)^3} - {(x - 1)^3} - 6{(x - 1)^2} = 20\), ước của \(a\) là
Điền vào chỗ trống \({x^3} + 512 = (x + 8)\left( {{x^2} - \left[ {} \right] + 64} \right)\)
Có bao nhiêu cách điền vào dấu ? để biểu thức \((x - 2).?\) là một hằng đẳng thức?
Tìm \(x\) biết \((x + 3)({x^2} - 3x + 9) - x({x^2} - 3) = 21\)
-5.
Để biểu thức \({x^3} + 6{x^2} + 12x + m\) là lập phương của một tổng thì giá trị của m là:
4.
6.
16.
Chọn phương án đúng nhất để điền vào chỗ trống.
“… bằng tích của tổng hai biểu thức với bình phương thiếu của hiệu hai biểu thức đó.”
Hiệu hai lập phương.
Tổng hai lập phương.
Biểu thức cần điền vào chỗ trống để có hằng đẳng thức \({x^3} + 1 = \left( {x + 1} \right)\left( {{x^2} - ... + 1} \right)\) đúng là:
\(x\)
\(-x\)
\(2x\)
\(-2x\)
Điền vào chỗ trống: \(\left( {3x + y} \right)\left( {9{x^2} + ... + {y^2}} \right) = 27{x^3} + {y^3}\)
\(3xy\).
\( - 3xy\).
\(6xy\).
\( - 6xy\).
Các đơn thức điền vào ô trống trong khai triển \({\left( {a + ...} \right)^3} = {a^2} + 9{a^2}b + 27a{b^2} + ...\) lần lượt là
\(3b\) và \(3{b^3}\).
\(b\) và \(3{b^3}\).
\(3b\) và \(27{b^3}\).
\(3b\) và \(9{b^2}\).
Để biểu thức \({x^3} + 6{x^2} + ... + 8\) là lập phương của một tổng thì \(...\) là
\(6x\).
\(8x\).
\(12x\).
\(10x\).
Cho đa thức P thỏa mãn \(\left( {x - 1} \right)P = {x^3} - 1\). Khi đó đa thức P là
\({x^2} - x + 1\).
\({x^2} + 2x + 1\).
\({x^2} + x + 1\).
\({x^2} - 2x + 1\).
Cho đa thức P thỏa mãn \(\left( {x - 1} \right).P = {x^3} - 1\). Khi đó đa thức P là:
\({x^2} - x + 1\).
\({x^2} + 2x + 1\).
\({x^2} + x + 1\).
\({x^2} - 2x + 1\).