Trắc nghiệm Bài 10: Số nguyên tố Toán 6 Kết nối tri thức

Đề bài

Câu 1 :

Khẳng định nào là sai:

  • A.

    $0$  và $1$  không là số nguyên tố cũng không phải hợp số.

  • B.

    Cho số $a > 1$, $a$  có $2$  ước thì $a$  là hợp số.

  • C.

    $2$ là số nguyên tố chẵn duy nhất.

  • D.

    Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.

Câu 2 :

Số nào trong các số sau không là số nguyên tố?

  • A.

    2

  • B.

    3

  • C.

    5

  • D.

    9

Câu 3 :

Phân tích số \(a\) ra thừa số nguyên tố \(a = p_1^{{m_1}}.p_2^{{m_2}}...p_k^{{m_k}}\), khẳng định nào sau đây là đúng:

  • A.

    Các số \({p_1};\,{p_2};...;\,{p_k}\) là các số dương.

  • B.

    Các số \({p_1};\,{p_2};...;\,{p_k} \in P\)(với $P$ là tập hợp các số nguyên tố).

  • C.

    Các số  \({p_1};\,{p_2};...;\,{p_k} \in N\).

  • D.

    Các số \({p_1};\,{p_2};...;\,{p_k}\) tùy ý.

Câu 4 :

Phân tích số $18$  thành thừa số nguyên tố:

  • A.

    $18 = 18.1$                    

  • B.

    $18 = 10 + 8$                  

  • C.

    $18 = {2.3^2}$            

  • D.

    $18 = 6 + 6 + 6$

Câu 5 :

Cho số $a = {2^2}.7$, hãy viết tập hợp tất cả các ước của $a$:

  • A.

    Ư\(\left( a \right)\)${\rm{ = \{ 4;7\} }}$                                                            

  • B.

    Ư$\left( a \right)$ ${\rm{ = \{ 1;4;7\} }}$            

  • C.

    Ư$\left( a \right)$${\rm{ = \{ 1;2;4;7;28\} }}$

  • D.

    Ư$\left( a \right)$${\rm{ = \{ 1;2;4;7;14;28\} }}$

Câu 6 :

Số 40 được phân tích thành các thừa số nguyên tố là:

  • A.

    \(40 = 4.10\)

  • B.

    \(40 = 2.20\)

  • C.

    \(40 = {2^2}.5\)

  • D.

    \(40 = {2^3}.5\)

Câu 7 :

225 chia hết cho tất cả bao nhiêu số nguyên tố?

  • A.

    9

  • B.

    3

  • C.

    5

  • D.

    2

Câu 8 :

Biết \(400 = {2^4}{.5^2}\). Hãy viết 800 thành tích các thừa số nguyên tố

  • A.

    \(800 = {2^2}{.5^2}\)

  • B.

    \(800 = {2^5}{.5^2}\)

  • C.

    \(800 = {2^5}{.5^5}\)

  • D.

    \(800 = 400.2\)

Câu 9 :

Khẳng định nào sau đây là đúng:

  • A.

    $A = {\rm{\{ 0; 1\} }}$ là tập hợp số nguyên tố    

  • B.

    $A = {\rm{\{ 3; 5\} }}$ là tập hợp số nguyên tố         

  • C.

    $A\, = {\rm{\{ 1; 3; 5\} }}$ là tập hợp các hợp số

  • D.

    $A = {\rm{\{ 7;8\} }}$ là tập hợp số hợp số

Câu 10 :

Kết quả của phép tính nào sau đây là số nguyên tố:

  • A.

    $15 - 5 + 3$

  • B.

    $7.2 + 1$     

  • C.

    $14.6:4$   

  • D.

    $6.4 - 12.2$

Câu 11 :

Thay dấu * để được số nguyên tố $\overline {*1} $:

  • A.

    $2$    

  • B.

    $8$   

  • C.

    $5$  

  • D.

    $4$

Câu 12 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.               

  • B.

    Mọi số tự nhiên đều có ước là $0$  .                     

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.              

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung.

Lời giải và đáp án

Câu 1 :

Khẳng định nào là sai:

  • A.

    $0$  và $1$  không là số nguyên tố cũng không phải hợp số.

  • B.

    Cho số $a > 1$, $a$  có $2$  ước thì $a$  là hợp số.

  • C.

    $2$ là số nguyên tố chẵn duy nhất.

  • D.

    Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.

Đáp án : B

Phương pháp giải :

Áp dụng định nghĩa:

+ Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó. Một định nghĩa khác tương đương: hợp số là số chia hết cho các số khác ngoài 1 và chính nó.

+ Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.

Lời giải chi tiết :

+) Số $a$ phải là số tự nhiên  lớn hơn \(1\) và có nhiều hơn $2$ ước thì $a$ mới là hợp số nên B sai.

+) $1$ là số tự nhiên chỉ có $1$ ước là $1$ nên không là số nguyên tố và $0$ là số tự nhiên nhỏ hơn $1$ nên không là số nguyên tố. Lại có $0$ và $1$ đều không là hợp số do đó A đúng.

+) Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó nên D đúng và suy ra $2$ là số nguyên tố  chẵn duy nhất nên C đúng.

Câu 2 :

Số nào trong các số sau không là số nguyên tố?

  • A.

    2

  • B.

    3

  • C.

    5

  • D.

    9

Đáp án : D

Phương pháp giải :

- Tìm các ước của 2;3;5;9.

- Số nguyên tố là số tự nhiên lớn hơn \(1,\) chỉ có \(2\) ước \(1\)  và chính nó.

- Chọn số có nhiều hơn 2 ước.

Lời giải chi tiết :

9 chia hết cho 3 nên 3 là một ước của 9. Mà 3 khác 1 và khác 9 nên 9 không là số nguyên tố.

Vậy 9 là số cần tìm.

Câu 3 :

Phân tích số \(a\) ra thừa số nguyên tố \(a = p_1^{{m_1}}.p_2^{{m_2}}...p_k^{{m_k}}\), khẳng định nào sau đây là đúng:

  • A.

    Các số \({p_1};\,{p_2};...;\,{p_k}\) là các số dương.

  • B.

    Các số \({p_1};\,{p_2};...;\,{p_k} \in P\)(với $P$ là tập hợp các số nguyên tố).

  • C.

    Các số  \({p_1};\,{p_2};...;\,{p_k} \in N\).

  • D.

    Các số \({p_1};\,{p_2};...;\,{p_k}\) tùy ý.

Đáp án : B

Phương pháp giải :

- Áp dụng kiến thức về phân tích $1$ số thành thừa số nguyên tố (các thừa số trong tích phải là số nguyên tố)

Lời giải chi tiết :

Khi phân tích một số \(a = p_1^{{m_1}}.p_2^{{m_2}}...p_k^{{m_k}}\) ra thừa số nguyên tố thì các số \({p_1},{p_2},...,{p_k}\) phải là các số nguyên tố.

Câu 4 :

Phân tích số $18$  thành thừa số nguyên tố:

  • A.

    $18 = 18.1$                    

  • B.

    $18 = 10 + 8$                  

  • C.

    $18 = {2.3^2}$            

  • D.

    $18 = 6 + 6 + 6$

Đáp án : C

Phương pháp giải :

- Phân tích số ra thành số nguyên tố.

Lời giải chi tiết :

- Đáp án A sai vì 1 không phải là số nguyên tố

- Đáp án B sai vì đây là phép cộng.

- Đáp án C đúng vì $2$  và $3$  là $2$  số nguyên tố và ${2.3^2} = 2.9 = 18$

- Đáp án D sai vì đây là phép cộng.

Câu 5 :

Cho số $a = {2^2}.7$, hãy viết tập hợp tất cả các ước của $a$:

  • A.

    Ư\(\left( a \right)\)${\rm{ = \{ 4;7\} }}$                                                            

  • B.

    Ư$\left( a \right)$ ${\rm{ = \{ 1;4;7\} }}$            

  • C.

    Ư$\left( a \right)$${\rm{ = \{ 1;2;4;7;28\} }}$

  • D.

    Ư$\left( a \right)$${\rm{ = \{ 1;2;4;7;14;28\} }}$

Đáp án : D

Phương pháp giải :

- Thực hiện phép tính để tìm ra $a$.

- Áp dụng kiến thức ước của $1$  số.

- Liệt kê tất cả các ước của số đó.

Lời giải chi tiết :

Ta có $a = {2^2}.7 = 4.7 = 28$

$28 = 28.1 = 14.2 = 7.4 = 7.2.2$, vậy ${\rm{U}}\left( {28} \right){\rm{ = }}\left\{ {{\rm{1;2;4;7;14;28}}} \right\}$

Câu 6 :

Số 40 được phân tích thành các thừa số nguyên tố là:

  • A.

    \(40 = 4.10\)

  • B.

    \(40 = 2.20\)

  • C.

    \(40 = {2^2}.5\)

  • D.

    \(40 = {2^3}.5\)

Đáp án : D

Phương pháp giải :

Sử dụng phương pháp “rẽ nhánh”:

- Tìm một ước nguyên tố của 40, là 2.

- Viết 40 thành tích của 2 với một thừa số khác: 40=2.20.

- Vẽ 2 nhánh từ số 40 cho hai số 2 và 20.

- Tiếp tục tìm ước nguyên tố của 20, là 2.

- Viết số 20 thành tích của 2 với một thừa số khác: 20=2.10.

- Vẽ 2 nhánh từ số 20 cho hai số 2 và 10.

- Viết số 10 thành tích của 2 với 5: 10=2.5

- Vẽ 2 nhánh từ số 10 cho hai số 2 và 5.

- Hai số này đều là số nguyên tố nên ta dừng lại.

- Lấy tích tất cả các thừa số ở cuối cùng mỗi nhánh.

Lời giải chi tiết :

Vậy \(40 = 2.2.2.5 = {2^3}.5\)

Câu 7 :

225 chia hết cho tất cả bao nhiêu số nguyên tố?

  • A.

    9

  • B.

    3

  • C.

    5

  • D.

    2

Đáp án : D

Phương pháp giải :

Phân tích các số ra thừa số nguyên tố theo cột dọc hoặc theo sơ đồ cây. Rồi liệt kê các ước nguyên tố của mỗi số.

Lời giải chi tiết :

Số 225 chia hết cho các số nguyên tố: 3; 5

Vậy 225 chia hết cho 2 số nguyên tố.

Câu 8 :

Biết \(400 = {2^4}{.5^2}\). Hãy viết 800 thành tích các thừa số nguyên tố

  • A.

    \(800 = {2^2}{.5^2}\)

  • B.

    \(800 = {2^5}{.5^2}\)

  • C.

    \(800 = {2^5}{.5^5}\)

  • D.

    \(800 = 400.2\)

Đáp án : B

Phương pháp giải :

- Lấy 800 chia cho 400. Viết 800 thành tích của 400 và thương nhận được.

- Viết 400 thành tích các thừa số nguyên tố.

Lời giải chi tiết :

\(400 = {2^4}{.5^2}\)

\(800 = 400.2 = {2.2^4}{.5^2} = {2^5}{.5^2}\)

Câu 9 :

Khẳng định nào sau đây là đúng:

  • A.

    $A = {\rm{\{ 0; 1\} }}$ là tập hợp số nguyên tố    

  • B.

    $A = {\rm{\{ 3; 5\} }}$ là tập hợp số nguyên tố         

  • C.

    $A\, = {\rm{\{ 1; 3; 5\} }}$ là tập hợp các hợp số

  • D.

    $A = {\rm{\{ 7;8\} }}$ là tập hợp số hợp số

Đáp án : B

Phương pháp giải :

- Áp dụng định nghĩa số nguyên tố và hợp số.

- Số $0;1$ không phải là số nguyên tố cũng không phải là hợp số.

Lời giải chi tiết :

Đáp án A:  Sai vì $0$ và $1$ không phải là số nguyên tố.

Đáp án C: Sai vì $1$ không phải là hợp số, $3,5$ là các số nguyên tố.

Đáp án D: Sai vì $7$ không phải là hợp số.

Đáp án B: Đúng vì $3;5$ đều là số nguyên tố

Câu 10 :

Kết quả của phép tính nào sau đây là số nguyên tố:

  • A.

    $15 - 5 + 3$

  • B.

    $7.2 + 1$     

  • C.

    $14.6:4$   

  • D.

    $6.4 - 12.2$

Đáp án : A

Phương pháp giải :

- Thực hiện phép tính để tìm ra kết quả.

- Áp dụng định nghĩa hợp số để tìm ra đáp án đúng.

Lời giải chi tiết :

$A.\,\,\,15 - 5 + 3 = 13$ là số nguyên tố

$B.\,\,\,7.2 + 1 = 14 + 1 = 15$, ta thấy \(15\) có ước \(1;3;5;15\) nên \(15\) là hợp số.

$C.\,\,\,14.6:4 = 84:4 = 21,$ ta thấy \(21\) có ước \(1;3;7;21\) nên \(21\) là hợp số

$D.\,\,\,6.4 - 12.2 = 24 - 24 = 0,$ ta thấy \(0\) không là số nguyên tố, không là hợp số.

Câu 11 :

Thay dấu * để được số nguyên tố $\overline {*1} $:

  • A.

    $2$    

  • B.

    $8$   

  • C.

    $5$  

  • D.

    $4$

Đáp án : D

Phương pháp giải :

+ Dấu * có thể nhận các giá trị \(\left\{ {2;8;5;4} \right\}\)

+ Dùng định nghĩa số nguyên tố để tìm ra số nguyên tố

Lời giải chi tiết :

Dấu * có thể nhận các giá trị \(\left\{ {2;8;5;4} \right\}\)

+) Ta có \(21\) có các ước \(1;3;7;21\) nên \(21\) là hợp số. Loại A

+) \(81\) có các ước \(1;3;9;27;81\) nên \(81\) là hợp số. Loại B

+) \(51\) có các ước \(1;3;17;51\) nên \(51\) là hợp số. Loại C

+) \(41\) chỉ có hai ước là \(1;41\) nên \(41\) là số nguyên tố.

Câu 12 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.               

  • B.

    Mọi số tự nhiên đều có ước là $0$  .                     

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.              

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung.

Đáp án : A

Phương pháp giải :

- Áp dụng kiến thức:

Mọi số tự nhiên đều có ước là $1$.

Số nguyên tố có $2$ ước là $1$  và chính nó.

Mọi số nguyên tố khác nhau đều có ước chung duy nhất là $1$.

Lời giải chi tiết :

A. Đáp án này đúng vì mọi số tự nhiên đều có ước chung là $1$.

B. Đáp án này sai, vì $0$ không là ước của $1$ số nào cả.

C. Đáp án này sai, vì số nguyên tố có $2$ ước là $1$ và chính nó.

D. Đáp án này sai, vì $2$ số nguyên tố có ước chung là $1$.

Trắc nghiệm Các dạng toán về số nguyên tố Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về số nguyên tố Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 11: Ước chung. Ước chung lớn nhất Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 11: Ước chung. Ước chung lớn nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về ước chung, ước chung lớn nhất Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về ước chung, ước chung lớn nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 12: Bội chung. Bội chung nhỏ nhất Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 12: Bội chung. Bội chung nhỏ nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về bội chung, bội chung nhỏ nhất Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về bội chung, bội chung nhỏ nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài tập cuối chương II Môn Toán Lớp 6 Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài tập cuối chương II Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về dấu hiệu chia hết cho 3, cho 9 Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về dấu hiệu chia hết cho 3, cho 9 Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 9: Dấu hiệu chia hết cho 3, cho 9 Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 9: Dấu hiệu chia hết cho 3, cho 9 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về dấu hiệu chia hết cho 2, cho 5 Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về dấu hiệu chia hết cho 2, cho 5 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 8: Dấu hiệu chia hết cho 2, cho 5 Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 8: Dấu hiệu chia hết cho 2, cho 5 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về quan hệ chia hết và tính chất Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về quan hệ chia hết và tính chất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 7: Quan hệ chia hết và tính chất Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 7: Quan hệ chia hết và tính chất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết