Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức
Đề bài
Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:
-
A.
\(2,5\)
-
B.
\(5,2\)
-
C.
\(0,4\)
-
D.
\(0,04\)
Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:
-
A.
\(1,2\)
-
B.
\(1,4\)
-
C.
\(1,5\)
-
D.
\(1,8\)
Số thập phân \(3,015\) được chuyển thành phân số là:
-
A.
\(\dfrac{{3015}}{{10}}\)
-
B.
\(\dfrac{{3015}}{{100}}\)
-
C.
\(\dfrac{{3015}}{{1000}}\)
-
D.
\(\dfrac{{3015}}{{10000}}\)
Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là:
-
A.
\(\dfrac{4}{5}\)
-
B.
\(\dfrac{4}{{ - 5}}\)
-
C.
\(\dfrac{5}{4}\)
-
D.
\(\dfrac{{ - 5}}{4}\)
Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:
-
A.
$35$
-
B.
$36$
-
C.
$37$
-
D.
$34$
Sắp xếp các phân số sau: \(\dfrac{1}{3};\dfrac{1}{2};\dfrac{3}{8};\dfrac{6}{7}\) theo thứ tự từ lớn đến bé.
-
A.
\(\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3};\dfrac{6}{7}\)
-
B.
\(\dfrac{6}{7};\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3}\)
-
C.
\(\dfrac{1}{2};\dfrac{1}{3};\dfrac{3}{8};\dfrac{6}{7}\)
-
D.
$\dfrac{6}{7};\dfrac{3}{8};\dfrac{1}{3};\dfrac{1}{2}$
Rút gọn phân số \(\dfrac{{ - 24}}{{105}}\) đến tối giản ta được:
-
A.
\(\dfrac{8}{{35}}\)
-
B.
\(\dfrac{{ - 8}}{{35}}\)
-
C.
\(\dfrac{{ - 12}}{{35}}\)
-
D.
\(\dfrac{{12}}{{35}}\)
Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).
-
A.
\(\dfrac{3}{{10}}\)
-
B.
\(\dfrac{{15}}{{10}}\)
-
C.
\(\dfrac{{15}}{{100}}\)
-
D.
Không có phân số nào thỏa mãn.
Tính: \(3\dfrac{3}{5} + 1\dfrac{1}{6}\) .
-
A.
\(4\dfrac{{23}}{{30}}\)
-
B.
\(5\dfrac{{23}}{{30}}\)
-
C.
\(2\dfrac{{23}}{{30}}\)
-
D.
\(3\dfrac{{23}}{{30}}\)
Tính: \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}}\) là:
-
A.
\(\dfrac{{18}}{{15}}\)
-
B.
\(\dfrac{{ - 2}}{5}\)
-
C.
\(\dfrac{1}{5}\)
-
D.
\(\dfrac{{ - 1}}{5}\)
Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).
-
A.
\(x = 4\)
-
B.
\(x = - 4\)
-
C.
\(x = 5\)
-
D.
\(x = - 0,2\)
Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.
-
A.
\(B < 0;C = 0\)
-
B.
\(B > 0;C = 0\)
-
C.
\(B < 0;C < 0\)
-
D.
\(B = 0;C < 0\)
Rút gọn phân số \(\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\) ta được kết quả là
-
A.
\(2000\)
-
B.
\(1000\)
-
C.
\(100\)
-
D.
\(200\)
Cho \(x\) là giá trị thỏa mãn \(\dfrac{6}{7}x - \dfrac{1}{2} = 1\)
-
A.
\(x = \dfrac{9}{{14}}\)
-
B.
\(x = \dfrac{7}{4}\)
-
C.
\(x = \dfrac{{ - 7}}{4}\)
-
D.
\(x = \dfrac{9}{7}\)
Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\) và \({x_2}\) là giá trị thỏa mãn \(\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\) . Khi đó \({x_1} + {x_2}\) bằng
-
A.
\(\dfrac{8}{3}\)
-
B.
\(\dfrac{{ - 5}}{{12}}\)
-
C.
\(\dfrac{9}{4}\)
-
D.
\(\dfrac{{11}}{6}\)
Rút gọn phân số \(A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\) đến tối giản ta được kết quả là phân số có mẫu số là
-
A.
\(9\)
-
B.
\(1\)
-
C.
\(\dfrac{1}{9}\)
-
D.
\(2\)
Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.
-
A.
\(A < - B\)
-
B.
\(2A > B\)
-
C.
\(A > B\)
-
D.
\(A = B\)
Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?
-
A.
\(\dfrac{1}{3}\)
-
B.
\(\dfrac{1}{4}\)
-
C.
$\dfrac{2}{3}$
-
D.
\(\dfrac{1}{2}\)
Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?
-
A.
\(39\) km/h
-
B.
\(40\) km/h
-
C.
$42$ km/h
-
D.
\(44\) km/h
Chọn câu đúng.
-
A.
$\dfrac{{23}}{{99}} < \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} < \dfrac{{23232323}}{{99999999}}$
-
B.
$\dfrac{{23}}{{99}} > \dfrac{{2323}}{{9999}} > \dfrac{{232323}}{{999999}} > \dfrac{{23232323}}{{99999999}}$
-
C.
$\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$
-
D.
$\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$
Không qui đồng, hãy so sánh hai phân số sau: \(\dfrac{{37}}{{67}}\) và \(\dfrac{{377}}{{677}}\).
-
A.
\(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\)
-
B.
\(\dfrac{{37}}{{67}} > \dfrac{{377}}{{677}}\)
-
C.
\(\dfrac{{37}}{{67}} = \dfrac{{377}}{{677}}\)
-
D.
\(\dfrac{{37}}{{67}} \ge \dfrac{{377}}{{677}}\)
Chọn câu đúng.
-
A.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.2.3.4.5.6.7...60\)
-
B.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...59\)
-
C.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...60\)
-
D.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 2.4.6.8...60\)
Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)
Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.
-
A.
\(10\)
-
B.
\(8\)
-
C.
\(6\)
-
D.
\(4\)
Tìm điều kiện của n để A là phân số tối giản.
-
A.
\(n \ne 2k - 1\left( {k \in Z} \right)\)
-
B.
\(n \ne 3k - 1\left( {k \in Z} \right)\)
-
C.
\(n \ne 2k - 1\left( {k \in Z} \right)\) và \(n \ne 3k - 1\left( {k \in Z} \right)\)
-
D.
\(n \ne 2k\left( {k \in Z} \right)\) và \(n \ne 3k\left( {k \in Z} \right)\)
Lời giải và đáp án
Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:
-
A.
\(2,5\)
-
B.
\(5,2\)
-
C.
\(0,4\)
-
D.
\(0,04\)
Đáp án : C
Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân.
\(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)
Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:
-
A.
\(1,2\)
-
B.
\(1,4\)
-
C.
\(1,5\)
-
D.
\(1,8\)
Đáp án : B
Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân.
\(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)
Số thập phân \(3,015\) được chuyển thành phân số là:
-
A.
\(\dfrac{{3015}}{{10}}\)
-
B.
\(\dfrac{{3015}}{{100}}\)
-
C.
\(\dfrac{{3015}}{{1000}}\)
-
D.
\(\dfrac{{3015}}{{10000}}\)
Đáp án : C
Áp dụng qui tắc chuyển từ số thập phân về phân số.
\(3,015 = \dfrac{{3015}}{{1000}}\)
Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là:
-
A.
\(\dfrac{4}{5}\)
-
B.
\(\dfrac{4}{{ - 5}}\)
-
C.
\(\dfrac{5}{4}\)
-
D.
\(\dfrac{{ - 5}}{4}\)
Đáp án : D
Hai phân số là nghịch đảo của nhau nếu tích của chúng bằng 1.
Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là \(\dfrac{{ - 5}}{4}\).
Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:
-
A.
$35$
-
B.
$36$
-
C.
$37$
-
D.
$34$
Đáp án : B
Áp dụng qui tắc so sánh số thập phân để tìm được $x$
Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).
Sắp xếp các phân số sau: \(\dfrac{1}{3};\dfrac{1}{2};\dfrac{3}{8};\dfrac{6}{7}\) theo thứ tự từ lớn đến bé.
-
A.
\(\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3};\dfrac{6}{7}\)
-
B.
\(\dfrac{6}{7};\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3}\)
-
C.
\(\dfrac{1}{2};\dfrac{1}{3};\dfrac{3}{8};\dfrac{6}{7}\)
-
D.
$\dfrac{6}{7};\dfrac{3}{8};\dfrac{1}{3};\dfrac{1}{2}$
Đáp án : B
+ Quy đồng tử số các phân số ta được các phân số cùng tử, sau đó so sánh và sắp xếp theo thứ tự từ lớn đến bé.
+ Chú ý rằng với những phân số dương cùng tử số , phân số nào có mẫu bé hơn thì phân số đó lớn hơn.
+ Hoặc quy đồng mẫu số các phân số rồi so sánh.
Ta có: $\dfrac{1}{3} = \dfrac{6}{{18}};\;\;\dfrac{1}{2} = \dfrac{6}{{12}};\;\;\dfrac{3}{8} = \dfrac{6}{{16}}.$
Vì:$\dfrac{6}{{18}} < \dfrac{6}{{16}} < \dfrac{6}{{12}} < \dfrac{6}{7} \Rightarrow \dfrac{6}{7} > \dfrac{1}{2} > \dfrac{3}{8} > \dfrac{1}{3}$.
Vậy các phân số trên được sắp xếp theo thứ tự từ lớn đến bé là: \(\dfrac{6}{7};\;\dfrac{1}{2};\;\dfrac{3}{8};\;\dfrac{1}{3}.\)
Rút gọn phân số \(\dfrac{{ - 24}}{{105}}\) đến tối giản ta được:
-
A.
\(\dfrac{8}{{35}}\)
-
B.
\(\dfrac{{ - 8}}{{35}}\)
-
C.
\(\dfrac{{ - 12}}{{35}}\)
-
D.
\(\dfrac{{12}}{{35}}\)
Đáp án : B
Phân số tối giản là phân số mà tử và mẫu có ước chung lớn nhất bằng 1.
\(\dfrac{{ - 24}}{{105}} = \dfrac{{ - 24:3}}{{105:3}} = \dfrac{{ - 8}}{{35}}\)
Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).
-
A.
\(\dfrac{3}{{10}}\)
-
B.
\(\dfrac{{15}}{{10}}\)
-
C.
\(\dfrac{{15}}{{100}}\)
-
D.
Không có phân số nào thỏa mãn.
Đáp án : C
Chuyển hai phân số đã cho về số thập phân, sau đó ta áp dụng phương pháp so sánh số thập phân.
Ta có: \(\dfrac{1}{{10}} = 0,1;\;\;\,\dfrac{2}{{10}} = 0,2\)
Vậy số cần tìm phải thỏa mãn: \(0,1 < x < 0,2\) nên trong các đáp án trên thì \(x\) chỉ có thể là \(0,15 = \dfrac{{15}}{{100}}.\)
Tính: \(3\dfrac{3}{5} + 1\dfrac{1}{6}\) .
-
A.
\(4\dfrac{{23}}{{30}}\)
-
B.
\(5\dfrac{{23}}{{30}}\)
-
C.
\(2\dfrac{{23}}{{30}}\)
-
D.
\(3\dfrac{{23}}{{30}}\)
Đáp án : A
Áp dụng qui tắc cộng hai hỗn số hoặc đưa hỗn số về dạng phân số rồi cộng hai phân số.
\(3\dfrac{3}{5} + 1\dfrac{1}{6} = \left( {3 + 1} \right) + \left( {\dfrac{3}{5} + \dfrac{1}{6}} \right) = 4 + \dfrac{{23}}{{30}} = 4\dfrac{{23}}{{30}}.\)
Tính: \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}}\) là:
-
A.
\(\dfrac{{18}}{{15}}\)
-
B.
\(\dfrac{{ - 2}}{5}\)
-
C.
\(\dfrac{1}{5}\)
-
D.
\(\dfrac{{ - 1}}{5}\)
Đáp án : B
Đưa về hai phân số cùng mẫu
Áp dụng qui tắc: Muốn cộng hai phân số cùng mẫu ta cộng các tử và giữ nguyên mẫu.
\(\dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)
\(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}} = \dfrac{6}{{15}} + \left( {\dfrac{{ - 12}}{{15}}} \right) = \dfrac{{6 + \left( { - 12} \right)}}{{15}} = \dfrac{{ - 6}}{{15}} = \dfrac{{ - 2}}{5}\)
Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).
-
A.
\(x = 4\)
-
B.
\(x = - 4\)
-
C.
\(x = 5\)
-
D.
\(x = - 0,2\)
Đáp án : D
Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\).
\(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)
Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.
-
A.
\(B < 0;C = 0\)
-
B.
\(B > 0;C = 0\)
-
C.
\(B < 0;C < 0\)
-
D.
\(B = 0;C < 0\)
Đáp án : A
Áp dụng qui tắc tính giá trị của biểu thức:
Ta thực hiện các phép tính theo thứ tự: Trong ngoặc \( \to \) nhân chia \( \to \) cộng trừ
\(\begin{array}{l}B = \,\,\left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\\ = \left( {\dfrac{2}{3} - \dfrac{3}{2}} \right).\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{6}.\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{8} + \dfrac{1}{2}\\ = \dfrac{{ - 1}}{8}.\end{array}\)
\(\begin{array}{l}C = \,\dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\\ = \dfrac{9}{{23}}.\left( {\dfrac{5}{8} + \dfrac{3}{8} - 1} \right)\\ = \dfrac{9}{{23}}.\left( {1 - 1} \right)\\ = \dfrac{9}{{23}}.0\\ = 0.\end{array}\)
Vậy \(C = 0;B < 0\)
Rút gọn phân số \(\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\) ta được kết quả là
-
A.
\(2000\)
-
B.
\(1000\)
-
C.
\(100\)
-
D.
\(200\)
Đáp án : B
Phân tích cả tử và mẫu để xuất hiện thừa số chung, sau đó rút gọn đến phân số tối giản.
\(\begin{array}{l}\;\;\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\\ = \dfrac{{1978.1979 + \left( {1979 + 1} \right).21 + 1958}}{{1979\left( {1980 - 1978} \right)}}\\ = \dfrac{{1978.1979 + 1979.21 + 21 + 1958}}{{1979.2}}\\ = \dfrac{{1978.1979 + 1979.21 + 1979}}{{1979.2}}\\ = \dfrac{{1979.\left( {1978 + 21 + 1} \right)}}{{1979.2}}\\ = \dfrac{{2000}}{2} = 1000.\end{array}\)
Cho \(x\) là giá trị thỏa mãn \(\dfrac{6}{7}x - \dfrac{1}{2} = 1\)
-
A.
\(x = \dfrac{9}{{14}}\)
-
B.
\(x = \dfrac{7}{4}\)
-
C.
\(x = \dfrac{{ - 7}}{4}\)
-
D.
\(x = \dfrac{9}{7}\)
Đáp án : B
Áp dụng qui tắc chuyển vế đổi dấu để tìm x.
Hoặc xác định \(\dfrac{6}{7}x\) là số bị trừ; \(\dfrac{1}{2}\) là số trừ và 1 là hiệu rồi áp dụng: số bị trừ bằng số trừ + hiệu
Rồi áp dụng thừa số chưa biết bằng tích chia cho thừa số đã biết
\(\begin{array}{l}\,\,\,\,\,\dfrac{6}{7}x - \dfrac{1}{2} = 1\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = 1 + \dfrac{1}{2}\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = \dfrac{3}{2}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{3}{2}:\dfrac{6}{7}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{7}{4}.\end{array}\)
Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\) và \({x_2}\) là giá trị thỏa mãn \(\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\) . Khi đó \({x_1} + {x_2}\) bằng
-
A.
\(\dfrac{8}{3}\)
-
B.
\(\dfrac{{ - 5}}{{12}}\)
-
C.
\(\dfrac{9}{4}\)
-
D.
\(\dfrac{{11}}{6}\)
Đáp án : D
Sử dụng qui tắc chuyển vế để tìm \({x_1};{x_2}\)
Từ đó tính \({x_1} + {x_2}\)
\(\begin{array}{l} + )\,\,\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{1}{2} - \left( {\dfrac{{ - 2}}{3}} \right)\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{7}{6}\\\dfrac{2}{3}x = \dfrac{7}{6} + \dfrac{1}{3}\\\dfrac{2}{3}x = \dfrac{3}{2}\\ x= \dfrac{3}{2}:\dfrac{2}{3}\\ x= \dfrac{9}{4}.\end{array}\)
Nên \({x_1} = \dfrac{9}{4}\)
\(\begin{array}{l} + )\,\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\\\dfrac{5}{6} - x = \dfrac{5}{4}\\x = \dfrac{5}{6} - \dfrac{5}{4}\\x = \dfrac{{ - 5}}{{12}}.\end{array}\)
Nên \({x_2} = - \dfrac{5}{{12}}\)
Từ đó \({x_1} + {x_2} = \dfrac{9}{4} + \left( { - \dfrac{5}{{12}}} \right) = \dfrac{{11}}{6}\)
Rút gọn phân số \(A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\) đến tối giản ta được kết quả là phân số có mẫu số là
-
A.
\(9\)
-
B.
\(1\)
-
C.
\(\dfrac{1}{9}\)
-
D.
\(2\)
Đáp án : A
Sử dụng tính chất phân phối của phép nhân đối với phép cộng để biến đổi tử số và mẫu số.
Từ đó rút gọn phân số
Ta có
\(\begin{array}{l}A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\\ = \dfrac{{7.9\left( {1 + 2.3 + 3.4} \right)}}{{21.27\left( {1 + 2.3 + 3.4} \right)}}\\ = \dfrac{{7.9}}{{3.7.9.3}}\\ = \dfrac{1}{9}\end{array}\)
Phân số này có mẫu số là 9.
Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.
-
A.
\(A < - B\)
-
B.
\(2A > B\)
-
C.
\(A > B\)
-
D.
\(A = B\)
Đáp án : D
Chuyển hỗn số về dạng phân số rồi rút gọn từng biểu thức A; B để so sánh.
Ta có \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\)\( = \dfrac{{\left( {\dfrac{{47}}{{15}} + \dfrac{3}{{15}}} \right):\dfrac{5}{2}}}{{\left( {\dfrac{{38}}{7} - \dfrac{9}{4}} \right):\dfrac{{267}}{{56}}}} = \dfrac{{\dfrac{{50}}{{15}}.\dfrac{2}{5}}}{{\left( {\dfrac{{152}}{{28}} - \dfrac{{63}}{{28}}} \right).\dfrac{{56}}{{267}}}}\)\( = \dfrac{{\dfrac{4}{3}}}{{\dfrac{{89}}{{28}}.\dfrac{{56}}{{267}}}} = \dfrac{{\dfrac{4}{3}}}{{\dfrac{2}{3}}} = 2\)
Và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\)\( = \dfrac{{\dfrac{6}{5}:\left( {\dfrac{6}{5}.\dfrac{5}{4}} \right)}}{{\dfrac{8}{{25}} + \dfrac{2}{{25}}}} = \dfrac{{\dfrac{6}{5}:\dfrac{3}{2}}}{{\dfrac{{10}}{{25}}}} = \dfrac{{\dfrac{4}{5}}}{{\dfrac{2}{5}}} = 2\)
Vậy \(A = B.\)
Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?
-
A.
\(\dfrac{1}{3}\)
-
B.
\(\dfrac{1}{4}\)
-
C.
$\dfrac{2}{3}$
-
D.
\(\dfrac{1}{2}\)
Đáp án : B
Tìm số phần bể vòi nước chảy được trong 1 giờ, rồi lấy kết quả đó nhân với thời gian mở vòi nước.
Đổi: \(45\)phút = \(\dfrac{3}{4}\) giờ
Mỗi giờ vòi nước chảy được số phần bể là: \(1:3 = \dfrac{1}{3}\) (bể)
Nếu mở vòi trong 45 phút thì được số phần bể là: \(\dfrac{3}{4}.\dfrac{1}{3} = \dfrac{1}{4}\)(bể)
Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?
-
A.
\(39\) km/h
-
B.
\(40\) km/h
-
C.
$42$ km/h
-
D.
\(44\) km/h
Đáp án : A
Áp dụng công thức: vận tốc = quãng đường : thời gian.
Thời gian người đó đi hết quãng đường AB là: 8 giờ 45 phút – 7 giờ 5 phút = 1 giờ 40 phút
Đổi 1 giờ 40 phút = \(\dfrac{5}{3}\) giờ.
Vận tốc của người đi xe máy đó là: \(65:\dfrac{5}{3} = 39\left( {km/h} \right)\)
Chọn câu đúng.
-
A.
$\dfrac{{23}}{{99}} < \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} < \dfrac{{23232323}}{{99999999}}$
-
B.
$\dfrac{{23}}{{99}} > \dfrac{{2323}}{{9999}} > \dfrac{{232323}}{{999999}} > \dfrac{{23232323}}{{99999999}}$
-
C.
$\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$
-
D.
$\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$
Đáp án : D
Áp dụng tính chất phân số để rút gọn các phấn số
So sánh hai phân số cùng mẫu
Ta có:
\(\dfrac{{2323}}{{9999}} = \dfrac{{2323:101}}{{9999:101}} = \dfrac{{23}}{{99}}\)
\(\dfrac{{232323}}{{999999}} = \dfrac{{232323:10101}}{{999999:10101}} = \dfrac{{23}}{{99}}\)
\(\dfrac{{23232323}}{{99999999}} = \dfrac{{23232323:1010101}}{{99999999:1010101}} = \dfrac{{23}}{{99}}\)
Vậy $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$
Không qui đồng, hãy so sánh hai phân số sau: \(\dfrac{{37}}{{67}}\) và \(\dfrac{{377}}{{677}}\).
-
A.
\(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\)
-
B.
\(\dfrac{{37}}{{67}} > \dfrac{{377}}{{677}}\)
-
C.
\(\dfrac{{37}}{{67}} = \dfrac{{377}}{{677}}\)
-
D.
\(\dfrac{{37}}{{67}} \ge \dfrac{{377}}{{677}}\)
Đáp án : A
Sử dụng so sánh với phần bù của 1
Ta có:
\(1 - \dfrac{{37}}{{67}} = \dfrac{{30}}{{67}};\;\;\;\;1 - \dfrac{{377}}{{677}} = \dfrac{{300}}{{677}}.\)
Lại có: \(\dfrac{{30}}{{67}} = \dfrac{{300}}{{670}} > \dfrac{{300}}{{677}}\) nên \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\) .
Chọn câu đúng.
-
A.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.2.3.4.5.6.7...60\)
-
B.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...59\)
-
C.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...60\)
-
D.
\(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 2.4.6.8...60\)
Đáp án : B
Sử dụng tính chất cơ bản của phân số: Nhân cả tử và mẫu của một phân số với cùng một số khác 0 thì ta được phân số mới bằng phân số đã cho.
Ta có \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = \dfrac{{31.32.33...60}}{{2.2.2....2}} = \dfrac{{\left( {31.32.33...60} \right)\left( {1.2.3...30} \right)}}{{{2^{30}}\left( {1.2.3...30} \right)}}\)
\( = \dfrac{{1.2.3.4.5...60}}{{\left( {1.2} \right).\left( {2.2} \right).\left( {3.2} \right).\left( {4.2} \right)...\left( {30.2} \right)}}\)\( = \dfrac{{\left( {2.4.6...60} \right)\left( {1.3.5.7...59} \right)}}{{2.4.6...60}} = 1.3.5...59\)
Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)
Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.
-
A.
\(10\)
-
B.
\(8\)
-
C.
\(6\)
-
D.
\(4\)
Đáp án: B
Ta biến đổi để đưa A về dạng \(A = m - \dfrac{a}{B}\) với m và a là số nguyên. Khi đó A có giá trị nguyên khi \(a\, \vdots \,B\) hay \(B \in Ư\left( a \right)\)
Ta có \(A = \dfrac{{n - 5}}{{n + 1}} = \dfrac{{n + 1 - 6}}{{n + 1}} = \dfrac{{n + 1}}{{n + 1}} - \dfrac{6}{{n + 1}} = 1 - \dfrac{6}{{n + 1}}\)
Để A có giá trị nguyên thì \(6\, \vdots \,\left( {n + 1} \right) \Rightarrow \left( {n + 1} \right) \in Ư\left( 6 \right) = \left\{ { \pm 1; \pm 2; \pm 3; \pm 6} \right\}\)
Ta có bảng sau
Vậy có 8 giá trị của n thỏa mãn là \(0; - 2;1; - 3;2; - 4;5; - 7.\)
Tìm điều kiện của n để A là phân số tối giản.
-
A.
\(n \ne 2k - 1\left( {k \in Z} \right)\)
-
B.
\(n \ne 3k - 1\left( {k \in Z} \right)\)
-
C.
\(n \ne 2k - 1\left( {k \in Z} \right)\) và \(n \ne 3k - 1\left( {k \in Z} \right)\)
-
D.
\(n \ne 2k\left( {k \in Z} \right)\) và \(n \ne 3k\left( {k \in Z} \right)\)
Đáp án: C
Ta sử dụng phân số \(\dfrac{A}{B}\) tối giản khi A và B là hai số nguyên tố cùng nhau nghĩa là \(\left( {A;B} \right) = 1\)
Để A tối giản thì (n-5) và (n+1) là hai số nguyên tố cùng nhau \( \Rightarrow \left( {n - 5;n + 1} \right) = 1\)
\( \Leftrightarrow \left( {n + 1 - n + 5;n + 1} \right) = 1 \Leftrightarrow \left( {n + 1;6} \right) = 1\)
Từ đó (n+1) không chia hết cho 2 và (n+1) không chia hết cho 3
Hay \(n \ne 2k - 1\) và \(n \ne 3k - 1\,\,\left( {k \in Z} \right)\)
Luyện tập và củng cố kiến thức Bài 27: Hai bài toán về phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 26: Phép nhân và phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 25: Phép cộng và phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về hỗn số dương Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 24: Hỗn số dương Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về so sánh phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 24: So sánh phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tính chất cơ bản của phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Tính chất cơ bản của phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về mở rộng khái niệm phân số. Phân số bằng nhau Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 23: Mở rộng phân số. Phân số bằng nhau Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập cuối chương IX Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 43: Xác suất thực nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 42: Kết quả có thể và sự kiện trong trò chơi, thí nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 41: Biểu đồ cột kép Toán 6 Kết nối tri thức với cuộc sống
- Trắc nghiệm Bài 40: Biểu đồ cột Toán 6 Kết nối tri thức