Trắc nghiệm Bài 4: Phép nhân và phép chia số tự nhiên Toán 6 Kết nối tri thức
Đề bài
6+6+6+6 bằng
-
A.
6
-
B.
6.2
-
C.
6.4
-
D.
64
\(789 \times 123\) bằng:
-
A.
97047
-
B.
79047
-
C.
47097
-
D.
77047
Tích \(4 \times a \times b \times c\) bằng
-
A.
\(4\)
-
B.
\(4ab\)
-
C.
\(4 + abc\)
-
D.
\(4abc\)
Cho \(a,b,c\) là các số tự nhiên tùy ý. Khẳng định nào sau đây sai?
-
A.
\(abc = \left( {ab} \right)c\)
-
B.
\(abc = a\left( {bc} \right)\)
-
C.
\(abc = b\left( {ac} \right)\)
-
D.
\(abc = a + b + c\)
Cho phép tính \(x:3 = 6\), khi đó thương của phép chia là
-
A.
\(x\)
-
B.
\(6\)
-
C.
\(3\)
-
D.
\(18\)
Trong phép chia có dư \(a\) chia cho \(b,\) trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\) và \(r\) duy nhất sao cho:
\(a = b.q + r\)
Khẳng định nào sau đây đúng?
-
A.
\(r \ge b\)
-
B.
\(0 < b < r\)
-
C.
\(0 < r < b\)
-
D.
\(0 \le r < b\)
Biểu diễn phép chia \(445:13\) dưới dạng \(a = b.q + r\) trong đó \(0 \le r < b\)
-
A.
\(445 = 13.34 + 3\)
-
B.
\(445 = 13.3 + 34\)
-
C.
\(445 = 34.3 + 13\)
-
D.
\(445 = 13.34\)
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Kết quả của phép tính \(547.63 + 547.37\) là
-
A.
\(54700\)
-
B.
\(5470\)
-
C.
\(45700\)
-
D.
\(54733\)
Tính nhanh \(125.1975.4.8.25\)
-
A.
\(1975000000\)
-
B.
\(1975000\)
-
C.
\(19750000\)
-
D.
\(197500000\)
Lời giải và đáp án
6+6+6+6 bằng
-
A.
6
-
B.
6.2
-
C.
6.4
-
D.
64
Đáp án : C
Đếm số các số 6 trong tổng.
Sử dụng kết quả: \(a.b = a + a + ... + a\) (Có b số hạng)
Kí hiệu của phép nhân là \(a \times b\) hoặc \(a.b\)
Tổng trên có 4 số 6 nên 6+6+6+6=6.4
\(789 \times 123\) bằng:
-
A.
97047
-
B.
79047
-
C.
47097
-
D.
77047
Đáp án : A
Đặt tính rồi tính.
Vậy \(789 \times 123 = 97047\)
Tích \(4 \times a \times b \times c\) bằng
-
A.
\(4\)
-
B.
\(4ab\)
-
C.
\(4 + abc\)
-
D.
\(4abc\)
Đáp án : D
Nếu các thừa số đều bằng chữ, hoặc chỉ có một thừa số bằng số thì ta có thể không viết dấu nhân giữa các thừa số.
\(4 \times a \times b \times c\) là tích của 4 thừa số:
Thừa số thứ nhất là một số: 4
Thừa số thứ 2, thứ 3, thứ 4 lần lượt là các chữ a,b,c.
Vậy tích này chỉ có 1 thừa số bằng số nên ta có thể bỏ dấu “\( \times \)” giữa các thừa số đi, tức là
\(4 \times a \times b \times c = 4abc\)
Cho \(a,b,c\) là các số tự nhiên tùy ý. Khẳng định nào sau đây sai?
-
A.
\(abc = \left( {ab} \right)c\)
-
B.
\(abc = a\left( {bc} \right)\)
-
C.
\(abc = b\left( {ac} \right)\)
-
D.
\(abc = a + b + c\)
Đáp án : D
Tích \(\left( {ab} \right)c\) hay \(a\left( {bc} \right)\) gọi là tích cả ba số a, b, c và viết gọn là \(abc\).
Tính chất giao hoán: \(a.b = b.a\)
\(\begin{array}{l}\left( {ab} \right)c = \left( {a.b} \right).c = a.b.c = abc\\a\left( {bc} \right) = a.\left( {b.c} \right) = a.b.c = abc\\b\left( {ac} \right) = b.\left( {a.c} \right) = b.a.c = a.b.c = abc\end{array}\)
Cho phép tính \(x:3 = 6\), khi đó thương của phép chia là
-
A.
\(x\)
-
B.
\(6\)
-
C.
\(3\)
-
D.
\(18\)
Đáp án : B
Ta sử dụng (số bị chia) : (số chia) = (thương) để xác định thương của phép chia
Phép chia \(x:3 = 6\) có \(x\) là số bị chia; \(3\) là số chia và \(6\) là thương.
Nên thương của phép chia là \(6.\)
Trong phép chia có dư \(a\) chia cho \(b,\) trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\) và \(r\) duy nhất sao cho:
\(a = b.q + r\)
Khẳng định nào sau đây đúng?
-
A.
\(r \ge b\)
-
B.
\(0 < b < r\)
-
C.
\(0 < r < b\)
-
D.
\(0 \le r < b\)
Đáp án : C
Định nghĩa về phép chia hết và phép chia có dư.
Khi chia a cho b, trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\) và \(r\) duy nhất sao cho:
\(a = b.q + r\) trong đó \(0 \le r < b\)
Phép chia a cho b là phép chia có dư nên \(r \ne 0\)
Vậy \(0 < r < b\).
Biểu diễn phép chia \(445:13\) dưới dạng \(a = b.q + r\) trong đó \(0 \le r < b\)
-
A.
\(445 = 13.34 + 3\)
-
B.
\(445 = 13.3 + 34\)
-
C.
\(445 = 34.3 + 13\)
-
D.
\(445 = 13.34\)
Đáp án : A
Đặt tính rồi tính.
Xác định a,b,q,r trong phép chia vừa nhận được.
Số bị chia là \(b = 445\), số chia là \(b = 13\) thương \(q = 34\), số dư là \(r = 3\). Ta biểu diễn phép chia như sau: \(445 = 13.34 + 3\)
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Đáp án : C
Đặt tính rồi tính.
Đếm số các phép chia có dư.
Vậy có 3 phép chia có dư
Kết quả của phép tính \(547.63 + 547.37\) là
-
A.
\(54700\)
-
B.
\(5470\)
-
C.
\(45700\)
-
D.
\(54733\)
Đáp án : A
Sử dụng tính chất phân phối của phép nhân đối với phép cộng để thực hiện phép tính.
$ab+ac=a(b+c)$
Ta có \(547.63 + 547.37\)\( = 547.\left( {63 + 37} \right) = 547.100 = 54700.\)
Tính nhanh \(125.1975.4.8.25\)
-
A.
\(1975000000\)
-
B.
\(1975000\)
-
C.
\(19750000\)
-
D.
\(197500000\)
Đáp án : D
Áp dụng tính chất giao hoán của phép nhân để tính nhanh
Ta có \(125.1975.4.8.25\)\( = \left( {125.8} \right).\left( {4.25} \right).1975\)\( = 1000.100.1975\)\( = 197500000\)
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia số tự nhiên Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia số tự nhiên (tiếp) Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập cuối chương I Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về cách ghi số tự nhiên, thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Cách ghi số tự nhiên. Thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập cuối chương IX Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 43: Xác suất thực nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 42: Kết quả có thể và sự kiện trong trò chơi, thí nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 41: Biểu đồ cột kép Toán 6 Kết nối tri thức với cuộc sống
- Trắc nghiệm Bài 40: Biểu đồ cột Toán 6 Kết nối tri thức