Trắc nghiệm Các dạng toán về phép nhân và phép chia số tự nhiên Toán 6 Kết nối tri thức
Đề bài
Để đánh số trang của một quyển sách dày \(2746\) trang (bắt đầu từ số 1), ta cần dùng bao nhiêu chữ số?
-
A.
\(9875\)
-
B.
\(9876\)
-
C.
\(9877\)
-
D.
\(9878\)
Tìm số \(\overline {xy} \) biết \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
-
A.
\(10\)
-
B.
\(11\)
-
C.
\(12\)
-
D.
\(13\)
Không tính giá trị cụ thể, hãy so sánh \(A = 1987657.1987655\) và \(B = 1987656.1987656\)
-
A.
\(A > B\)
-
B.
\(A < B\)
-
C.
\(A \le B\)
-
D.
\(A = B\)
Tổng \(1 + 3 + 5 + 7 + ... + 95 + 97\) là
-
A.
Số có chữ số tận cùng là \(7.\)
-
B.
Số có chữ số tận cùng là \(2.\)
-
C.
Số có chữ số tận cùng là \(3.\)
-
D.
Số có chữ số tận cùng là \(1.\)
Tìm số tự nhiên \(x\) biết \(\left( {x - 4} \right).1000 = 0\)
-
A.
\(x = 4\)
-
B.
\(x = 3\)
-
C.
\(x = 0\)
-
D.
\(x = 1000\)
Số tự nhiên nào dưới đây thỏa mãn \(2018\left( {x - 2018} \right) = 2018\)
-
A.
\(x = 2017\)
-
B.
\(x = 2018\)
-
C.
\(x = 2019\)
-
D.
\(x = 2020\)
Tích \(25.9676.4\) bằng với
-
A.
\(1000.9676\)
-
B.
\(9676 + 100\)
-
C.
\(9676.100\)
-
D.
\(9676.10\)
Tổng \(1 + 2 + 3 + 4 + ... + 2018\) bằng
-
A.
\(4074342\)
-
B.
\(2037171\)
-
C.
\(2036162\)
-
D.
\(2035152\)
Kết quả của phép tính \(879.2a + 879.5a + 879.3a\) là
-
A.
\(8790\)
-
B.
\(87900a\)
-
C.
\(8790a\)
-
D.
\(879a\)
Kết quả của phép tính $12.100 + 100.36 - 100.19$ là
-
A.
\(29000\)
-
B.
\(3800\)
-
C.
\(290\)
-
D.
\(2900\)
Tình nhanh \(49.15 - 49.5\) ta được kết quả là
-
A.
\(490\)
-
B.
\(49\)
-
C.
\(59\)
-
D.
\(4900\)
Lời giải và đáp án
Để đánh số trang của một quyển sách dày \(2746\) trang (bắt đầu từ số 1), ta cần dùng bao nhiêu chữ số?
-
A.
\(9875\)
-
B.
\(9876\)
-
C.
\(9877\)
-
D.
\(9878\)
Đáp án : C
+ Tìm số trang có đánh 1 chữ số, số trang đánh 2 chữ số, số trang đánh 3 chữ số, số trang đánh 4 chữ số
+ Từ đó suy ra số chữ số cần dùng.
Quyển sách có:
+ Số trang có \(1\) chữ số là \(9 - 1 + 1 = 9\)
+ Số trang có \(2\) chữ số là \(99 - 10 + 1 = 90\) trang
+ Số trang có \(3\) chữ số là \(999 - 100 + 1 = 900\) trang
+ Số trang có \(4\) chữ số là \(2746 - 1000 + 1 = 1747\) trang
Vậy số chữ số cần dùng là:
\(1.9 + 2.90 + 3.900 + 4.1747 = 9877\) (chữ số)
Tìm số \(\overline {xy} \) biết \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
-
A.
\(10\)
-
B.
\(11\)
-
C.
\(12\)
-
D.
\(13\)
Đáp án : A
Sử dụng mối quan hệ giữa các hàng trăm, hàng chục hàng đơn vị khi phân tích một số trong hệ thập phân
Ta có \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
\(\overline {xy} .\overline {xyx} = \overline {xy} .100 + \overline {xy} \)
\(\overline {xy} .\overline {xyx} = \overline {xy} \left( {100 + 1} \right)\)
\(\overline {xy} .\overline {xyx} = \overline {xy} .101\)
Suy ra \(\overline {xyx} = 101\) nên \(x = 1;y = 0\)
Vậy \(\overline {xy} = 10.\)
Không tính giá trị cụ thể, hãy so sánh \(A = 1987657.1987655\) và \(B = 1987656.1987656\)
-
A.
\(A > B\)
-
B.
\(A < B\)
-
C.
\(A \le B\)
-
D.
\(A = B\)
Đáp án : B
Áp dụng tính chất phân phối giữa phép nhân với phép cộng để biến đổi và so sánh \(A,B.\)
Ta có \(A = 1987657.1987655\)\( = \left( {1987656 + 1} \right).1987655\)\( = 1987656.1987655 + 1987655\,\,\,\left( 1 \right)\)
Và \(B = 1987656.\left( {1987655 + 1} \right)\) \( = 1987656.1987655 + 1987656\,\,\,\left( 2 \right)\)
Vì \(1987655 < 1987656\) và từ (1) và (2) suy ra \(A < B.\)
Tổng \(1 + 3 + 5 + 7 + ... + 95 + 97\) là
-
A.
Số có chữ số tận cùng là \(7.\)
-
B.
Số có chữ số tận cùng là \(2.\)
-
C.
Số có chữ số tận cùng là \(3.\)
-
D.
Số có chữ số tận cùng là \(1.\)
Đáp án : D
+ Tính số các số tự nhiên lẻ liên tiếp từ \(1\) đến \(97\) bằng công thức (số cuối-số đầu):2+1
+ Tổng các số tự nhiên lẻ liên tiếp từ \(1\) đến \(97\) được tính bằng công thức
(số cuối+số đầu). số các số hạng :2
Số các số tự nhiên lẻ liên tiếp từ \(1\) đến \(97\) là \(\left( {97 - 1} \right):2 + 1 = 49\) số
Do đó \(1 + 3 + 5 + 7 + ... + 95 + 97\)\( = \left( {97 + 1} \right).49:2 = 2401.\)
Vậy tổng cần tìm có chữ số tận cùng là \(1.\)
Tìm số tự nhiên \(x\) biết \(\left( {x - 4} \right).1000 = 0\)
-
A.
\(x = 4\)
-
B.
\(x = 3\)
-
C.
\(x = 0\)
-
D.
\(x = 1000\)
Đáp án : A
Sử dụng cách tìm \(x\): Nếu hai số nhân với nhau bằng \(0\) thì có ít nhất một thừa số phải bằng \(0.\)
Ta có \(\left( {x - 4} \right).1000 = 0\) nên \(x - 4 = 0\) (vì \(1000 \ne 0\))
Suy ra
\(x = 0 + 4\)
\(x = 4.\)
Vậy \(x = 4.\)
Số tự nhiên nào dưới đây thỏa mãn \(2018\left( {x - 2018} \right) = 2018\)
-
A.
\(x = 2017\)
-
B.
\(x = 2018\)
-
C.
\(x = 2019\)
-
D.
\(x = 2020\)
Đáp án : C
Áp dụng mối quan hệ giữa các số: để tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.
Ta có \(2018\left( {x - 2018} \right) = 2018\)
\(x - 2018 = 2018:2018\)
\(x - 2018 = 1\)
\(x = 2018 + 1\)
\(x = 2019\)
Vậy \(x = 2019.\)
Tích \(25.9676.4\) bằng với
-
A.
\(1000.9676\)
-
B.
\(9676 + 100\)
-
C.
\(9676.100\)
-
D.
\(9676.10\)
Đáp án : C
Áp dụng tính chất giao hoán của phép nhân để nhân các số thích hợp
Ta có \(25.9676.4\)\( = 9676.25.4 = 9676.100\)
Tổng \(1 + 2 + 3 + 4 + ... + 2018\) bằng
-
A.
\(4074342\)
-
B.
\(2037171\)
-
C.
\(2036162\)
-
D.
\(2035152\)
Đáp án : B
+ Tính số các số tự nhiên liên tiếp từ \(1\) đến \(2018\) bằng công thức (số cuối-số đầu)+1
+ Tổng các số tự nhiên liên tiếp từ \(1\) đến \(2018\) được tính bằng công thức
(số cuối+số đầu). số các số hạng :2
Số các số tự nhiên liên tiếp từ \(1\) đến \(2018\) là \(2018 - 1 + 1 = 2018\) số
Như vậy từ \(1\) đến \(2018\) có số các số hạng là $2018.$
Tổng \(1 + 2 + 3 + 4 + ... + 2018\)\( = \left( {2018 + 1} \right).2018:2 = 2037171.\)
Kết quả của phép tính \(879.2a + 879.5a + 879.3a\) là
-
A.
\(8790\)
-
B.
\(87900a\)
-
C.
\(8790a\)
-
D.
\(879a\)
Đáp án : C
Áp dụng tính chất phân phối của phép nhân với phép cộng, tính chất giao hoán của phép nhân.
Ta có \(879.2a + 879.5a + 879.3a\)\( = 879.a.2 + 879.a.5 + 879.a.3\)\( = 879a\left( {2 + 5 + 3} \right) = 879a.10 = 8790a\)
Kết quả của phép tính $12.100 + 100.36 - 100.19$ là
-
A.
\(29000\)
-
B.
\(3800\)
-
C.
\(290\)
-
D.
\(2900\)
Đáp án : D
Sử dụng tính chất phân phối của phép nhân với phép cộng; phép trừ \(ab + ac - ad = a\left( {b + d - c} \right).\)
Ta có $12.100 + 100.36 - 100.19$\( = 100.\left( {12 + 36 - 19} \right) = 100.29 = 2900.\)
Tình nhanh \(49.15 - 49.5\) ta được kết quả là
-
A.
\(490\)
-
B.
\(49\)
-
C.
\(59\)
-
D.
\(4900\)
Đáp án : A
Sử dụng tính chất phân phối của phép nhân với phép trừ \(ab - ac = a\left( {b - c} \right).\)
Ta có \(49.15 - 49.5\)\( = 49.\left( {15 - 5} \right) = 49.10 = 490.\)
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia số tự nhiên (tiếp) Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập cuối chương I Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép nhân và phép chia số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về cách ghi số tự nhiên, thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Cách ghi số tự nhiên. Thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập cuối chương IX Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 43: Xác suất thực nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 42: Kết quả có thể và sự kiện trong trò chơi, thí nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 41: Biểu đồ cột kép Toán 6 Kết nối tri thức với cuộc sống
- Trắc nghiệm Bài 40: Biểu đồ cột Toán 6 Kết nối tri thức