Trắc nghiệm Bài 5: Lũy thừa với số mũ tự nhiên Toán 6 Kết nối tri thức
Đề bài
Chọn câu sai.
-
A.
\({a^m}.{a^n} = {a^{m + n}}\)
-
B.
\({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$
-
C.
\({a^0} = 1\)
-
D.
\({a^1} = 0\)
Viết gọn tích \(4.4.4.4.4\) dưới dạng lũy thừa ta được
-
A.
\({4^5}\)
-
B.
\({4^4}\)
-
C.
\({4^6}\)
-
D.
\({4^3}\)
Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là
-
A.
\({10^5}\)
-
B.
\({10^4}\)
-
C.
\({100^2}\)
-
D.
\({20^5}\)
Tính giá trị của lũy thừa \({2^6},\) ta được
-
A.
\(32\)
-
B.
\(64\)
-
C.
\(16\)
-
D.
\(128\)
Cơ số và số mũ của \({2019^{2020}}\) lần lượt là:
-
A.
2019 và 2020
-
B.
2020 và 2019
-
C.
2019 và \({2019^{2020}}\)
-
D.
\({2019^{2020}}\) và 2019
Viết tích \({a^4}.{a^6}\) dưới dạng một lũy thừa ta được
-
A.
\({a^8}\)
-
B.
\({a^9}\)
-
C.
\({a^{10}}\)
-
D.
\({a^2}\)
Lũy thừa nào dưới đây biểu diễn thương \({17^8}:{17^3}\)?
-
A.
\({5^{17}}\)
-
B.
\({17^5}\)
-
C.
\({17^{11}}\)
-
D.
\({17^6}\)
Chọn câu đúng.
-
A.
\({5^2}{.5^3}{.5^4} = {5^{10}}\)
-
B.
\({5^2}{.5^3}:{5^4} = 5\)
-
C.
\({5^3}:5 = 5\)
-
D.
\({5^1} = 1\)
\({7^2}{.7^4}:{7^3}\) bằng
-
A.
\({7^1}\)
-
B.
\({7^2}\)
-
C.
\({7^3}\)
-
D.
\({7^9}\)
\({2^3}.16\) bằng
-
A.
\({2^7}\)
-
B.
\({2^8}\)
-
C.
\({2^9}\)
-
D.
\({2^{12}}\)
Số tự nhiên \(x\) thỏa mãn \({\left( {2x + 1} \right)^3} = 125\) là
-
A.
\(x = 2\)
-
B.
\(x = 3\)
-
C.
\(x = 5\)
-
D.
\(x = 4\)
Lời giải và đáp án
Chọn câu sai.
-
A.
\({a^m}.{a^n} = {a^{m + n}}\)
-
B.
\({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$
-
C.
\({a^0} = 1\)
-
D.
\({a^1} = 0\)
Đáp án : D
Sử dụng các công thức chia hai lũy thừa cùng cơ số; nhân hai lũy thừa cùng cơ số và các qui ước
Ta có với $ a,m,n \in N$ thì
+ \({a^m}.{a^n} = {a^{m + n}}\) nên A đúng
+ \({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$ nên B đúng
+ $a^0=1$ nên C đúng.
+ \({a^1} = a\) nên D sai.
Viết gọn tích \(4.4.4.4.4\) dưới dạng lũy thừa ta được
-
A.
\({4^5}\)
-
B.
\({4^4}\)
-
C.
\({4^6}\)
-
D.
\({4^3}\)
Đáp án : A
Sử dụng định nghĩa lũy thừa
$\underbrace {a.a.a.....a}_{n\,\,{\rm{thừa \, số}}}$ $ = {a^n}$
Ta có \(4.4.4.4.4 = {4^5}\)
Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là
-
A.
\({10^5}\)
-
B.
\({10^4}\)
-
C.
\({100^2}\)
-
D.
\({20^5}\)
Đáp án : A
+ Tách \(100 = 10.10\)
+ Viết dưới dạng lũy thừa với cơ số $10.$
Ta có \(10.10.10.100\)\( = 10.10.10.10.10 = {10^5}\)
Tính giá trị của lũy thừa \({2^6},\) ta được
-
A.
\(32\)
-
B.
\(64\)
-
C.
\(16\)
-
D.
\(128\)
Đáp án : B
Sử dụng công thức \({a^n} = a.a.a...a\) (\(n\) thừa số $a$) để tính giá trị.
Ta có \({2^6} = 2.2.2.2.2.2 = 4.4.4 = 16.4 = 64.\)
Cơ số và số mũ của \({2019^{2020}}\) lần lượt là:
-
A.
2019 và 2020
-
B.
2020 và 2019
-
C.
2019 và \({2019^{2020}}\)
-
D.
\({2019^{2020}}\) và 2019
Đáp án : A
Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:
\({a^n} = a.a \ldots ..a\) (\(n\) thừa số \(a\) ) (\(n \notin \mathbb{N}*\) )
\(a\) được gọi là cơ số.
\(n\) được gọi là số mũ.
\({2019^{2020}}\) có cơ số là 2019 và số mũ là 2020.
Viết tích \({a^4}.{a^6}\) dưới dạng một lũy thừa ta được
-
A.
\({a^8}\)
-
B.
\({a^9}\)
-
C.
\({a^{10}}\)
-
D.
\({a^2}\)
Đáp án : C
Sử dụng công thức nhân hai lũy thừa cùng cơ số ${a^m}.{a^n} = {a^{m + n}}$
Ta có \({a^4}.{a^6}\)\( = {a^{4 + 6}} = {a^{10}}\)
Lũy thừa nào dưới đây biểu diễn thương \({17^8}:{17^3}\)?
-
A.
\({5^{17}}\)
-
B.
\({17^5}\)
-
C.
\({17^{11}}\)
-
D.
\({17^6}\)
Đáp án : B
Sử dụng công thức chia hai lũy thừa cùng cơ số ${a^m}:{a^n} = {a^{m - n}}$ \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)
Ta có \({17^8}:{17^3}\)\( = {17^{8 - 3}} = {17^5}\)
Chọn câu đúng.
-
A.
\({5^2}{.5^3}{.5^4} = {5^{10}}\)
-
B.
\({5^2}{.5^3}:{5^4} = 5\)
-
C.
\({5^3}:5 = 5\)
-
D.
\({5^1} = 1\)
Đáp án : B
Sử dụng các công thức ${a^m}.{a^n} = {a^{m + n}}$; ${a^m}:{a^n} = {a^{m - n}}$ \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)
+) Ta có \({5^2}{.5^3}{.5^4} = {5^{2 + 3 + 4}} = {5^9}\) nên A sai.
+) \({5^2}{.5^3}:{5^4} = {5^{2 + 3 - 4}} = {5^1} = 5\) nên B đúng
+) \({5^3}:5 = {5^{3 - 1}} = {5^2};\,{5^1} = 5\) nên C;D sai.
\({7^2}{.7^4}:{7^3}\) bằng
-
A.
\({7^1}\)
-
B.
\({7^2}\)
-
C.
\({7^3}\)
-
D.
\({7^9}\)
Đáp án : C
Lấy \({7^2}{.7^4}\) rồi chia cho \({7^3}\)
Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ cho nhau.
\({a^m}:{a^n} = {a^{m - n}}\) \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)
\(\begin{array}{l}{7^2}{.7^4} = {7^{2 + 4}} = {7^6}\\{7^2}{.7^4}:{7^3} = {7^6}:{7^3} = {7^{6 - 3}} = {7^3}\end{array}\)
\({2^3}.16\) bằng
-
A.
\({2^7}\)
-
B.
\({2^8}\)
-
C.
\({2^9}\)
-
D.
\({2^{12}}\)
Đáp án : A
Chuyển 16 thành lũy thừa cơ số 2: Tách 16 thành tích của các thừa số 2.
Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
\({a^m}.{a^n} = {a^{m + n}}\)
\(\begin{array}{l}16 = 2.2.2.2 = {2^4}\\{2^3}.16 = {2^3}{.2^4} = {2^{3 + 4}} = {2^7}\end{array}\)
Số tự nhiên \(x\) thỏa mãn \({\left( {2x + 1} \right)^3} = 125\) là
-
A.
\(x = 2\)
-
B.
\(x = 3\)
-
C.
\(x = 5\)
-
D.
\(x = 4\)
Đáp án : A
Đưa về hai lũy thừa cùng số mũ rồi cho hai cơ số bằng nhau.
Ta có \({\left( {2x + 1} \right)^3} = 125\)
\({\left( {2x + 1} \right)^3} = {5^3}\)
\(2x + 1 = 5\)
\(2x = 5 - 1\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2.\)
Luyện tập và củng cố kiến thức Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập cuối chương I Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia số tự nhiên (tiếp) Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia số tự nhiên Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép nhân và phép chia số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về cách ghi số tự nhiên, thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Cách ghi số tự nhiên. Thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập cuối chương IX Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 43: Xác suất thực nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 42: Kết quả có thể và sự kiện trong trò chơi, thí nghiệm Toán 6 Kết nối tri thức
- Trắc nghiệm Bài 41: Biểu đồ cột kép Toán 6 Kết nối tri thức với cuộc sống
- Trắc nghiệm Bài 40: Biểu đồ cột Toán 6 Kết nối tri thức