Trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức

Đề bài

Câu 1 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

  • A.

    Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa  

  • B.

    Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

  • C.

    Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

  • D.

    Cả ba đáp án A,B,C đều đúng

Câu 2 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

  • A.

    \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)   

  • B.

    \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)          

  • C.

    \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

  • D.

    \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

Câu 3 :

Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

  • A.

    $100$ 

  • B.

    $95$ 

  • C.

    $105$ 

  • D.

    $80$ 

Câu 4 :

Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

  • A.

    6

  • B.
    3
  • C.
    2
  • D.
    1
Câu 5 :

Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)  là

  • A.

    $319$          

  • B.

    $931$     

  • C.

    $193$               

  • D.

    $391$

Câu 6 :

Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

  • A.

    $9$    

  • B.

    $10$           

  • C.

     $11$                          

  • D.

    $12$

Câu 7 :

Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

  • A.

    $x = 7$   

  • B.

     $x = 8$                    

  • C.

    $x = 9$                        

  • D.

     $x = 10$

Câu 8 :

Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

  • A.

    $132$ 

  • B.

    $312$    

  • C.

    $213$   

  • D.

    $215$

Câu 9 :

Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

  • A.

    $77$

  • B.

    $78$

  • C.

    $79$

  • D.

    $80$

Câu 10 :

Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

  • A.

    $x = 560$

  • B.

    $x = 280$

  • C.

    $x = 20$

  • D.

    $x = 40$

Lời giải và đáp án

Câu 1 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

  • A.

    Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa  

  • B.

    Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

  • C.

    Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

  • D.

    Cả ba đáp án A,B,C đều đúng

Đáp án : C

Lời giải chi tiết :

Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ  

Câu 2 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

  • A.

    \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)   

  • B.

    \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)          

  • C.

    \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

  • D.

    \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

Đáp án : B

Lời giải chi tiết :

Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

Câu 3 :

Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

  • A.

    $100$ 

  • B.

    $95$ 

  • C.

    $105$ 

  • D.

    $80$ 

Đáp án : C

Phương pháp giải :

Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

Lời giải chi tiết :

Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)

Câu 4 :

Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

  • A.

    6

  • B.
    3
  • C.
    2
  • D.
    1

Đáp án : A

Phương pháp giải :

Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \)  nhân và chia \( \to \)  cộng và trừ.

Lấy kết quả trong ngoặc nhân với 3.

Lời giải chi tiết :

\(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)

Câu 5 :

Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)  là

  • A.

    $319$          

  • B.

    $931$     

  • C.

    $193$               

  • D.

    $391$

Đáp án : D

Phương pháp giải :

Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.

Sau đó là phép lũy thừa, nhân và trừ các kết quả.

Lời giải chi tiết :

Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)

\( = {3^4}.6 - \left( {131 - {6^2}} \right)\)

\( = 81.6 - \left( {131 - 36} \right)\)

\( = 486 - 95 = 391.\)

Câu 6 :

Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

  • A.

    $9$    

  • B.

    $10$           

  • C.

     $11$                          

  • D.

    $12$

Đáp án : B

Phương pháp giải :

+ Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.

+ Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$

Lời giải chi tiết :

\(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)

Câu 7 :

Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

  • A.

    $x = 7$   

  • B.

     $x = 8$                    

  • C.

    $x = 9$                        

  • D.

     $x = 10$

Đáp án : A

Phương pháp giải :

Dựa vào mối quan hệ giữa số hạng và tổng, giữa số bị trừ, số trừ và hiệu hoặc giữa thừa số và tích để tìm $x$.

Lời giải chi tiết :

\(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)

Câu 8 :

Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

  • A.

    $132$ 

  • B.

    $312$    

  • C.

    $213$   

  • D.

    $215$

Đáp án : C

Phương pháp giải :

Dùng tính chất  \(\left( {a + b + c} \right):m = a:m + b:m + c:m\)

Và các công thức lũy thừa \({\left( {a.b} \right)^n} = {a^n}.{b^n};\,{\left( {{a^n}} \right)^m} = {a^{n.m}};\,{a^m}:{a^n} = {a^{m - n}}\) để tính toán.

Lời giải chi tiết :

Ta có \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\)

\( = {10^3}:{5^3} + {10^4}:{5^3} + {125^2}:{5^3}\)

\( = {\left( {2.5} \right)^3}:{5^3} + {\left( {2.5} \right)^4}:{5^3} + {\left( {{5^3}} \right)^2}:{5^3}\)

\( = {2^3}{.5^3}:{5^3} + {2^4}{.5^4}:{5^3} + {5^6}:{5^3}\)

\( = {2^3} + {2^4}.5 + {5^3}\)

\( = 8 + 16.5 + 125\)

$ = 8 + 80 + 125 = 213.$

Câu 9 :

Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

  • A.

    $77$

  • B.

    $78$

  • C.

    $79$

  • D.

    $80$

Đáp án : A

Phương pháp giải :

Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

Lời giải chi tiết :

Ta có \({6^2}:4.3 + {2.5^2} = 36:4.3 + 2.25 = 9.3 + 50 = 27 + 50 = 77\).

Câu 10 :

Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

  • A.

    $x = 560$

  • B.

    $x = 280$

  • C.

    $x = 20$

  • D.

    $x = 40$

Đáp án : B

Phương pháp giải :

Bước 1: Phá ngoặc tròn rồi thực hiện phép tính trong ngoặc vuông 
Bước 2: Coi biểu thức trong ngoặc là số trừ chưa biết 
Muốn tìm số trừ chưa biết ta lấy số bị trừ trừ đi hiệu 
Bước 3: Coi \(2x\)  là số bị trừ chưa biết 
Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ
Muốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.

Lời giải chi tiết :

Ta có: 

$914 - [(x - 300) + x] = 654\;$

\(\begin{array}{l}914 - \left( {x - 300 + x} \right) = 654\\914 - \left( {2x - 300} \right) = 654\\2x - 300 = 914 - 654\\2x - 300 = 260\\2x = 260 + 300\\2x = 560\\x = 560:2\\x = 280\end{array}\)
Vậy \(x = 280.\)

Trắc nghiệm Các dạng toán về thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài tập cuối chương I Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài tập cuối chương I Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 5: Lũy thừa với số mũ tự nhiên Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 5: Lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về phép nhân và phép chia số tự nhiên (tiếp) Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia số tự nhiên (tiếp) Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về phép nhân và phép chia số tự nhiên Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về phép nhân và phép chia số tự nhiên Toán 6 Kết nối tri thức với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 4: Phép nhân và phép chia số tự nhiên Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 4: Phép nhân và phép chia số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về phép cộng và phép trừ số tự nhiên Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 3: Phép cộng và phép trừ số tự nhiên Toán 7 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 3: Phép cộng và phép trừ số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về cách ghi số tự nhiên, thứ tự trong tập hợp các số tự nhiên Toán 6 Kết nối tri thức với cuộc sống

Luyện tập và củng cố kiến thức Các dạng toán về cách ghi số tự nhiên, thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 2: Cách ghi số tự nhiên. Thứ tự trong tập hợp các số tự nhiên Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 2: Cách ghi số tự nhiên. Thứ tự trong tập hợp các số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về tập hợp Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Các dạng toán về tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1: Tập hợp Toán 6 Kết nối tri thức

Luyện tập và củng cố kiến thức Bài 1: Tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết