Đề bài

Trong phép chia có dư \(a\) chia cho \(b,\) trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\)\(r\)  duy nhất sao cho:

\(a = b.q + r\)

Khẳng định nào sau đây đúng?

  • A.

    \(r \ge b\)

  • B.

    \(0 < b < r\)

  • C.

    \(0 < r < b\)

  • D.

    \(0 \le r < b\)

Phương pháp giải

Định nghĩa về phép chia hết và phép chia có dư.

Lời giải của GV Loigiaihay.com

Khi chia a cho b, trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\)\(r\)  duy nhất sao cho:

\(a = b.q + r\)       trong đó  \(0 \le r < b\)

Phép chia a cho b là phép chia có dư nên \(r \ne 0\)

Vậy \(0 < r < b\).

Đáp án : C

Chú ý

Nếu không để ý đến cụm từ “phép chia có dư” thì sẽ chọn nhầm đáp án D.