Bài 7 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo


Biết rằng ({4^alpha } = frac{1}{5}). Tính giá trị các biểu thức sau:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Biết rằng \({4^\alpha } = \frac{1}{5}\). Tính giá trị các biểu thức sau:

a) \({16^\alpha } + {16^{ - \alpha }}\);                 

b) \({\left( {{2^\alpha } + {2^{ - \alpha }}} \right)^2}\).

Phương pháp giải - Xem chi tiết

Biến đổi đưa về luỹ thừa của \({4^\alpha }\).

Lời giải chi tiết

a) \({16^\alpha } + {16^{ - \alpha }} \)

\(= {16^\alpha } + \frac{1}{{{{16}^\alpha }}} \)

\(= {\left( {{4^2}} \right)^\alpha } + \frac{1}{{{{\left( {{4^2}} \right)}^\alpha }}} \)

\(= {\left( {{4^\alpha }} \right)^2} + \frac{1}{{{{\left( {{4^\alpha }} \right)}^2}}} \)

\(= {\left( {\frac{1}{5}} \right)^2} + \frac{1}{{{{\left( {\frac{1}{5}} \right)}^2}}} \)

\(= \frac{{626}}{{25}}\).

b) \({\left( {{2^\alpha } + {2^{ - \alpha }}} \right)^2} \)

\(= {\left( {{2^\alpha }} \right)^2} + {2.2^\alpha }{.2^{ - \alpha }} + {\left( {{2^{ - \alpha }}} \right)^2}\)

\(= {2^{2\alpha }} + 2 + {2^{ - 2\alpha }} \)

\(= {\left( {{2^2}} \right)^\alpha } + 2 + {\left( {{2^2}} \right)^{ - \alpha }}\)

\(= {4^\alpha } + 2 + {4^{ - \alpha }} \)

\(= {4^\alpha } + 2 + \frac{1}{{{4^\alpha }}}\)

\(= \frac{1}{5} + 2 + \frac{1}{{\frac{1}{5}}}\)

\(= \frac{{36}}{5}\).


Bình chọn:
3.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí