Lý thuyết Phép tính lũy thừa - Toán 11 Chân trời sáng tạo>
1. Lũy thừa với số mũ nguyên - Lũy thừa với số mũ nguyên dương:
1. Lũy thừa với số mũ nguyên
- Lũy thừa với số mũ nguyên dương:
\({a^n} = \underbrace {a.a.a...a}_{n\,thừa\,số}\) \(\left( {a \in \mathbb{R},n \in \mathbb{N}*} \right)\).
- Lũy thừa với số mũ nguyên âm, số mũ 0:
\({a^{ - n}} = \frac{1}{{{a^n}}}\); \({a^0} = 1\) \(\left( {n \in \mathbb{N}*,a \in \mathbb{R},a \ne 0} \right)\).
2. Căn bậc n
Cho số thực b và số nguyên \(n \ge 2\).
- Số a là căn bậc n của số b nếu \({a^n} = b\).
- Sự tồn tại căn bậc n:
+ Nếu n lẻ thì có duy nhất một căn bậc n của b, kí hiệu \(\sqrt[n]{b}\).
+ Nếu n chẵn thì:
- b < 0: không tồn tại căn bậc n của b.
- b = 0: có một căn bậc n của b là 0.
- b > 0: có hai căn bậc n của b đối với nhau, kí hiệu giá trị dương là \(\sqrt[n]{b}\) và giá trị âm là \( - \sqrt[n]{b}\).
+ Các tính chất:
- \(\sqrt[n]{a}.\sqrt[n]{b} = \sqrt[n]{{ab}}\).
- \(\frac{{\sqrt[n]{a}}}{{\sqrt[n]{b}}} = \sqrt[n]{{\frac{a}{b}}}\).
- \({\left( {\sqrt[n]{a}} \right)^m} = \sqrt[n]{{{a^m}}}\).
- \(\sqrt[m]{{\sqrt[n]{a}}} = \sqrt[{mn}]{a}\).
3. Lũy thừa với số mũ hữu tỉ
Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có:
\({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).
4. Lũy thừa với số mũ thực
Giới hạn của dãy số \(\left( {{a^{{r_n}}}} \right)\) được gọi là lũy thừa của số thực dương a với số mũ \(\alpha\), kí hiệu là \({a^\alpha }\).
\({a^\alpha } = \mathop {\lim }\limits_{x \to + \infty } {a^{{r_n}}}\) với \(\alpha = \mathop {\lim }\limits_{x \to + \infty } {r_n}\).
5. Tính chất của phép tính lũy thừa
Cho a, b là những số thực dương; \(\alpha ;\beta \) là những số thực bất kì. Khi đó:
\(\begin{array}{l}{a^\alpha }.{a^\beta } = {a^{\alpha + \beta }};\\\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }};\\{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }};\\{\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha };\\{\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}.\end{array}\)

- Giải mục 1 trang 6, 7 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Giải mục 2 trang 7, 8, 9 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Giải mục 3 trang 9 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Giải mục 4 trang 10, 11 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Giải mục 5 trang 11, 12 SGK Toán 11 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 136 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 130 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 121 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 113 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 107 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 136 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 130 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 121 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 113 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 107 SGK Toán 11 tập 1 - Chân trời sáng tạo




