Bài tập cuối chương 4 Toán 11 Chân trời sáng tạo

Bình chọn:
4.5 trên 59 phiếu
Bài 1 trang 127

Cho tam giác \(ABC\). Lấy điểm \(M\) trên cạnh \(AC\) kéo dài (Hình 1). Mệnh đề nào sau đây là mệnh đề sai?

Xem lời giải

Bài 2 trang 127

Cho tứ diện \(ABCD\) với \(I\) và \({\rm{?}}\) lần lượt là trung điểm các cạnh \(AB\) và \(CD\). Mệnh đề nào sau đây đúng?

Xem lời giải

Bài 3 trang 127

Cho hình chóp \(S.ABCD\) có \(AC\) cắt \(B{\rm{D}}\) tại \(M\), \(AB\) cắt \(C{\rm{D}}\) tại \(N\). Trong các đường thẳng sau đây, đường nào là giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\)?

Xem lời giải

Bài 4 trang 127

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,J,E,F\) lần lượt là trung điểm \(SA,SB,SC,SD\). Trong các đường thẳng sau, đường nào không song song với \(IJ\)?

Xem lời giải

Bài 5 trang 127

Cho hình bình hành \(ABCD\) và một điểm \(S\) không nằm trong mặt phẳng \(\left( {ABCD} \right)\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là một đường thẳng song song với đường thẳng nào sau đây?

Xem lời giải

Bài 6 trang 127

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 10. \(M\) là điểm trên \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) song song với \(AB\) và \(C{\rm{D}}\), cắt hình chóp theo một tứ giác có diện tích là

Xem lời giải

Bài 7 trang 127

Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?

Xem lời giải

Bài 8 trang 128

Cho hình lăng trụ (ABC.A'B'C'). Gọi (M,N,P,Q) lần lượt là trung điểm của các cạnh (AC,AA',A'C',BC). Ta có:

Xem lời giải

Bài 9 trang 128

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(A'B'\) và \(O\) là một điểm thuộc miền trong của mặt bên \(CC'D'D\). Tìm giao tuyến của mặt phẳng \(\left( {OMN} \right)\) với các mặt của hình hộp.

Xem lời giải

Bài 10 trang 128

Cho hình chóp \(S.ABCD\) với \(ABCD\) là hình thoi cạnh \(a\), tam giác \(SA{\rm{D}}\) đều. \(M\) là điểm trên cạnh \(AB\), \(\left( \alpha \right)\) là mặt phẳng qua \(M\) và \(\left( \alpha \right)\parallel \left( {SAD} \right)\) cắt \(CD,SC,SB\) lần lượt tại \(N,P,Q\).

Xem lời giải

Bài 11 trang 128

Cho mặt phẳng \(\left( \alpha \right)\) và hai đường thẳng chéo nhau \(a,b\) cắt \(\left( \alpha \right)\) tại \(A\) và \(B\). Gọi \(d\) là đường thẳng thay đổi luôn luôn song song với \(\left( \alpha \right)\) và cắt \(a\) tại \(M\), cắt \(b\) tại \(N\). Qua điểm \(N\) dựng đường thẳng song song với \(a\) cắt \(\left( \alpha \right)\) tại điểm \(C\).

Xem lời giải

Bài 12 trang 128

Cho hai hình bình hành (ABCD) và (ABEF) nằm trong hai mặt phẳng khác nhau. Lấy các điểm (M,N) lần lượt thuộc các đường chéo (AC) và (BF) sao cho (MC = 2MA;NF = 2NB). Qua (M,N) kẻ các đường thẳng song song với (AB), cắt các cạnh (AD,AF) lần lượt tại ({M_1},{N_1}). Chứng minh rằng:

Xem lời giải