Bài 3 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo>
Rút gọn các biểu thức sau (left( {a > 0,b > 0} right)):
Đề bài
Rút gọn các biểu thức sau \(\left( {a > 0,b > 0} \right)\):
a) \({a^{\frac{1}{3}}}{a^{\frac{1}{2}}}{a^{\frac{7}{6}}}\);
b) \({a^{\frac{2}{3}}}{a^{\frac{1}{4}}}:{a^{\frac{1}{6}}}\);
c) \(\left( {\frac{3}{2}{a^{ - \frac{3}{2}}}{b^{ - \frac{1}{2}}}} \right)\left( { - \frac{1}{3}{a^{\frac{1}{2}}}{b^{\frac{3}{2}}}} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ.
Lời giải chi tiết
a) \({a^{\frac{1}{3}}}{a^{\frac{1}{2}}}{a^{\frac{7}{6}}} = {a^{\frac{1}{3} + \frac{1}{2} + \frac{7}{6}}} = {a^2}\)
b) \({a^{\frac{2}{3}}}{a^{\frac{1}{4}}}:{a^{\frac{1}{6}}} = {a^{\frac{2}{3} + \frac{1}{4} - \frac{1}{6}}} = {a^{\frac{3}{4}}}\)
c) \(\left( {\frac{3}{2}{a^{ - \frac{3}{2}}}{b^{ - \frac{1}{2}}}} \right)\left( { - \frac{1}{3}{a^{\frac{1}{2}}}{b^{\frac{3}{2}}}} \right) = \frac{3}{2}.\left( { - \frac{1}{3}} \right).{a^{ - \frac{3}{2} + \frac{1}{2}}}.{b^{ - \frac{1}{2} + \frac{3}{2}}} = - \frac{1}{2}{a^{ - 1}}b = - \frac{b}{{2{\rm{a}}}}\)
- Bài 4 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 5 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 6 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 7 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 2 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo