Giải mục 2 trang 16 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Sử dụng máy tính cầm tay để tính (cos 75^circ ) và (tan left( { - frac{{19pi }}{6}} right))
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Thực hành 2
Sử dụng máy tính cầm tay để tính
\(\cos 75^\circ \,\,\)và \(\tan \left( { - \frac{{19\pi }}{6}} \right)\)
Phương pháp giải:
Dựa vào kiến thức vừa học được để tính
Lời giải chi tiết:
\(\begin{array}{l}\cos 75^\circ = \frac{{\sqrt 6 - \sqrt 2 }}{4}\\\tan \left( { - \frac{{19\pi }}{6}} \right) = - \frac{{\sqrt 3 }}{3}\end{array}\)
- Giải mục 3 trang 16,17 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải mục 4 trang 17, 18 , 19 GK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 1 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo
- Bài 2 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo
- Bài 3 trang 19 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo