Giải mục 3 trang 59, 60 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
Hoạt động 3
Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
a) So sánh \(q.{S_n}\) và \(\left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\).
b) So sánh \({u_1} + q.{S_n}\) và \({S_n} + {u_1}.{q^n}\).
Phương pháp giải:
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết:
a) Ta có:
\(q.{S_n} = q.\left( {{u_1} + {u_2} + ... + {u_n}} \right) = {u_1}.q + {u_2}.q + ... + {u_n}.q = \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\)
b) Ta có:
\({u_1} + q.{S_n} = {u_1} + \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = \left( {{u_1} + {u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = {S_n} + {u_1}.{q^n}\)
Thực hành 3
Tính tổng \(n\) số hạng đầu tiên của cấp số nhân \(\left( {{u_n}} \right)\) trong các trường hợp sau:
a) \({u_1} = {10^5};q = 0,1;n = 5\);
b) \({u_1} = 10;{u_2} = - 20;n = 5\).
Phương pháp giải:
Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) là: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).
Lời giải chi tiết:
a) \({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{{{10}^5}\left( {1 - {{\left( {0,1} \right)}^5}} \right)}}{{1 - 0,1}} = 111110\).
b) Ta có: \({u_2} = {u_1}.q \Leftrightarrow - 20 = 10.q \Leftrightarrow q = - 2\)
\({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{10\left( {1 - {{\left( { - 2} \right)}^5}} \right)}}{{1 - \left( { - 2} \right)}} = 110\).
Vận dụng 4
Trong bài toán ở Hoạt động mở đầu đầu bài học, tính tổng các độ cao của quả bóng sau 10 lần rơi đầu tiên.
Phương pháp giải:
Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) là: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).
Lời giải chi tiết:
Theo đề bài ta có dãy số chỉ độ cao của quả bóng là một cấp số nhân có số hạng đầu \({u_1} = 120\) và công bội \(q = \frac{1}{2}\).
Tổng các độ cao của quả bóng sau 10 lần rơi đầu tiên là:
\({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{120\left( {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right)}}{{1 - \left( {\frac{1}{2}} \right)}} = 239,765625\left( {cm} \right)\).
- Bài 1 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo