Bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo>
a) Số đo bốn góc của một tứ giác lập thành cấp số nhân. Tìm số đo của bốn góc đó biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.
Đề bài
a) Số đo bốn góc của một tứ giác lập thành cấp số nhân. Tìm số đo của bốn góc đó biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.
b) Viết sáu số xen giữa các số –2 và 256 để được cấp số nhân có tám số hạng. Nếu viết tiếp thì số hạng thứ 15 là bao nhiêu?
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết
a) Giả sử số đo bốn góc của tứ giác lần lượt là \({u_1},{u_1}.q,{u_1}.{q^2},{u_1}.{q^3}\left( {{u_1},q > 0} \right)\).
Tổng số đo bốn góc của một tứ giác bằng \({360^ \circ }\) nên ta có phương trình:
\({u_1} + {u_1}.q + {u_1}.{q^2} + {u_1}.{q^3} = 360 \Leftrightarrow {u_1}\left( {1 + q + {q^2} + {q^3}} \right) = 360\left( 1 \right)\)
Số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất nên ta có phương trình:
\(\frac{{{u_1}.{q^3}}}{{{u_1}}} = 8 \Leftrightarrow {q^3} = 8 \Leftrightarrow q = 2\left( 2 \right)\)
Thế (2) vào (1) ta có: \({u_1}\left( {1 + 2 + {2^2} + {2^3}} \right) = 360 \Leftrightarrow {u_1} = 24\)
Vậy số đo bốn góc của tứ giác đó là: \({24^ \circ };{24^ \circ }.2 = {48^ \circ };{24^ \circ }{.2^2} = {96^ \circ };{24^ \circ }{.2^3} = {192^ \circ }\).
b) Giả sử cấp số nhân đó có số hạng đầu \({u_1}\) và công bội \(q\).
Theo đề bài ta có: \(\left\{ \begin{array}{l}{u_1} = - 2\\{u_8} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 2\\{u_1}.{q^7} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 2\\{q^7} = - 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 2\\q = - 2\end{array} \right.\).
Vậy ta cần viết thêm sáu số là:
\( - 2.\left( { - 2} \right) = 4;4.\left( { - 2} \right) = - 8;\left( { - 8} \right).\left( { - 2} \right) = 16;16.\left( { - 2} \right) = - 32;\left( { - 32} \right).\left( { - 2} \right) = 64;64.\left( { - 2} \right) = - 128\)
Số hạng thứ 15 của cấp số nhân là: \({u_{15}} = {u_1}.{q^{14}} = - 2.{\left( { - 2} \right)^{14}} = - 32768\).
- Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 7 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 8 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo