Bài 1 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Trong các dãy số sau đây, dãy số nào là cấp số nhân?
Đề bài
Trong các dãy số sau đây, dãy số nào là cấp số nhân?
a) \({u_n} = 3{\left( { - 2} \right)^n}\);
b) \({u_n} = {\left( { - 1} \right)^{n + 1}}{.7^n}\);
c) \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 2{u_n} + 3\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Bước 1: Tính \({u_{n + 1}}\).
Bước 2: Xét thương \(\frac{{{u_{n + 1}}}}{{{u_n}}}\).
Bước 3: Kết luận:
‒ Nếu \(\frac{{{u_{n + 1}}}}{{{u_n}}} = q\) là một hằng số (không đổi) thì dãy số là cấp số nhân có công bội \(q\).
‒ Nếu \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) thay đổi với \(n \in {\mathbb{N}^*}\) thì dãy số không là cấp số nhân.
Lời giải chi tiết
a) Ta có: \({u_{n + 1}} = 3{\left( { - 2} \right)^{n + 1}}\)
Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{3{{\left( { - 2} \right)}^{n + 1}}}}{{3{{\left( { - 2} \right)}^n}}} = \frac{{3{{\left( { - 2} \right)}^n}.\left( { - 2} \right)}}{{3{{\left( { - 2} \right)}^n}}} = - 2\)
Vậy dãy số là cấp số nhân có công bội \(q = - 2\).
b) Ta có: \({u_{n + 1}} = {\left( { - 1} \right)^{\left( {n + 1} \right) + 1}}{.7^{n + 1}} = {\left( { - 1} \right)^{n + 2}}{.7^{n + 1}}\)
Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} \right)}^{n + 2}}{{.7}^{n + 1}}}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} = \frac{{{{\left( { - 1} \right)}^{n + 1}}.\left( { - 1} \right){{.7}^n}.7}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} = - 7\)
Vậy dãy số là cấp số nhân có công bội \(q = - 7\).
c) Ta có: \({u_1} = 1;{u_2} = 2{u_1} + 3 = 2.1 + 3 = 5;{u_3} = 2{u_2} + 3 = 2.5 + 3 = 13\)
Vì \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên dãy số không là cấp số nhân.
- Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo