Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
Đề bài
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết
a)
\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} - {u_1} = 15\\{u_1}.{q^3} - {u_1}.q = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^4} - 1} \right) = 15\\{u_1}.\left( {{q^3} - q} \right) = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^2} - 1} \right)\left( {{q^2} + 1} \right) = 15\left( 1 \right)\\{u_1}.q\left( {{q^2} - 1} \right) = 6\left( 2 \right)\end{array} \right.\)
Do \(q = \pm 1\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:
\(\frac{q}{{{q^2} + 1}} = \frac{6}{{15}} \Leftrightarrow 15q = 6\left( {{q^2} + 1} \right) \Leftrightarrow 15q = 6{q^2} + 6 \Leftrightarrow 6{q^2} - 15q + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)
Với \(q = \frac{1}{2}\) thế vào (2) ta được: \({u_1}.\frac{1}{2}\left( {{{\left( {\frac{1}{2}} \right)}^2} - 1} \right) = 6 \Leftrightarrow {u_1} = - 16\).
Với \(q = 2\) thế vào (2) ta được: \({u_1}.2\left( {{2^2} - 1} \right) = 6 \Leftrightarrow {u_1} = 1\).
Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:
‒ Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = 2\).
‒ Cấp số nhân có số hạng đầu \({u_1} = - 16\) và công bội \(q = \frac{1}{2}\).
b)
\(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} - {u_1}.{q^2} + {u_1}.{q^4} = 65\\{u_1} + {u_1}.{q^6} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\left( 1 \right)\\{u_1}\left( {1 + {q^6}} \right) = 325\left( 2 \right)\end{array} \right.\)
Chia vế với vế của (1) cho (2) ta được:
\(\begin{array}{l}\frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{{65}}{{325}} \Leftrightarrow \frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{1}{5} \Leftrightarrow 1 + {q^6} = 5\left( {1 - {q^2} + {q^4}} \right)\\ \Leftrightarrow 1 + {q^6} = 5 - 5{q^2} + 5{q^4} \Leftrightarrow {q^6} - 5{q^4} + 5{q^2} - 4 = 0\end{array}\)
Đặt \({q^2} = t\left( {t \ge 0} \right)\). Khi đó phương trình có dạng:
\({t^3} - 5{t^2} + 5t - 4 = 0 \Leftrightarrow t = 4 \Leftrightarrow {q^2} = 4 \Leftrightarrow q = \pm 2\)
Với \(q = - 2\) thế vào (2) ta được: \({u_1}\left( {1 + {{\left( { - 2} \right)}^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).
Với \(q = 2\) thế vào (2) ta được: \({u_1}\left( {1 + {2^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).
Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:
‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).
‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = - 2\).
- Bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 7 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo