Bài 7 trang 33 SGK Toán 11 tập 1 - Chân trời sáng tạo


Trong Hình 13, một chiếc máy bay A bay ở độ cao 500m theo một đường thẳng đi ngang qua phía trên trạm quan sát T ở mặt đất.

Đề bài

Trong Hình 13, một chiếc máy bay A bay ở độ cao 500m theo một đường thẳng đi ngang qua phía trên trạm quan sát T ở mặt đất. Hình chiếu vuông góc của A lên mặt đất là H, \(\alpha \) là góc lượng giác \((Tx,{\rm{ }}TA)\) \((0 < \alpha  < \pi ).\)

a) Biểu diễn toạ độ \({x_H}\) của điểm H trên trục \({T_x}\) theo \(\alpha \).

b) Dựa vào đồ thị hàm số côtang, hãy cho biết với \(\frac{\pi }{6} < \alpha  < \frac{{2\pi }}{3}\) thì \({x_H}\) nằm trong khoảng nào. Làm tròn kết quả đến hàng phần mười.

Phương pháp giải - Xem chi tiết

Dựa vào hình vẽ và sử dụng đồ thị hàm số côtang để giải.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Xét tam giác AHT vuông tại H có:

\(\cot \alpha  = \frac{{TH}}{{AH}} \Leftrightarrow TH = AH.\cot \alpha  = 500.\cot \alpha \)

Vậy trên trục \({T_x}\) tọa độ \({x_H} = 500.\cot \alpha \).

b) Ta có đồ thị của hàm số\(y = cot\alpha \)trong khoảng \(\frac{\pi }{6} < \alpha  < \frac{{2\pi }}{3}\) là:

Khi đó \(-\;\frac{1}{{\sqrt 3 }} < cot\alpha  < \frac{1}{{\sqrt 3 }} \Leftrightarrow -\;\frac{{500}}{{\sqrt 3 }} < 500.cot\alpha  < \frac{{500}}{{\sqrt 3 }}\)

\( \Leftrightarrow -\;\frac{{500}}{{\sqrt 3 }} < {x_H} < \frac{{500}}{{\sqrt 3 }} \Leftrightarrow  - 288,7 < {x_H} < 288,7\).

Vậy \({x_H}\; \in \;\{  - 288,7;288,7\} \).


Bình chọn:
4.3 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí