Bài 2 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo>
Cho hình chóp tứ giác đều \(S.ABCD\) có \(O\) là tâm của đáy và có tất cả các cạnh bằng nhau.
Đề bài
Cho hình chóp tứ giác đều \(S.ABCD\) có \(O\) là tâm của đáy và có tất cả các cạnh bằng nhau.
a) Tìm góc giữa đường thẳng \(SA\) và \(\left( {ABCD} \right)\).
b) Tim góc phẳng nhị diện \(\left[ {A,SO,B} \right];\left[ {S,AB,O} \right]\).
Phương pháp giải - Xem chi tiết
‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a'\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a'} \right)\).
Lời giải chi tiết
a) \(S.ABCD\) là hình chóp tứ giác đều có \(O\) là tâm của đáy
\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO}\)
Giả sử hình chóp tứ giác đều có tất cả các cạnh bằng \(a\).
\(\begin{array}{l}AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow AO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\\\cos \widehat {SAO} = \frac{{AO}}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {SAO} = {45^ \circ }\end{array}\)
Vậy \(\left( {SA,\left( {ABCD} \right)} \right) = {45^ \circ }\)
b) Gọi \(I\) là trung điểm của \(AB\)
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AO,SO \bot BO\)
Vậy \(\widehat {AOB}\) là góc phẳng nhị diện \(\left[ {A,SO,B} \right]\).
\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow \widehat {AOB} = {90^ \circ }\)
\(\Delta SAB\) đều \( \Rightarrow SI \bot AB\)
\(\Delta OAB\) vuông cân tại \(O \Rightarrow OI \bot AB\)
Vậy \(\widehat {SIO}\) là góc phẳng nhị diện \(\left[ {S,AB,O} \right]\).
Ta có: \(O\) là trung điểm của \(BD\)
\(I\) là trung điểm của \(AB\)
\( \Rightarrow OI\) là đường trung bình của \(\Delta AB{\rm{D}}\)
\( \Rightarrow OI = \frac{1}{2}AD = \frac{a}{2}\)
\(SO = \sqrt {S{A^2} - A{O^2}} = \frac{{a\sqrt 2 }}{2}\)
\(\tan \widehat {SIO} = \frac{{SO}}{{OI}} = \sqrt 2 \Rightarrow \widehat {SIO} \approx 54,{7^ \circ }\)
- Bài 3 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 5 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 1 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Giải mục 2 trang 84, 85 SGK Toán 11 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo