Trắc nghiệm Bài 5,6: Phép nhân, phép chia các số nguyên Toán 6 Cánh diều
Đề bài
Kết quả của phép tính \(\left( { - 125} \right).8\) là:
-
A.
$1000$
-
B.
$ - 1000$
-
C.
$ - 100$
-
D.
$ - 10000$
Chọn câu sai.
-
A.
$\left( { - 5} \right).25 = - 125$
-
B.
$6.\left( { - 15} \right) = - 90$
-
C.
$125.\left( { - 20} \right) = - 250$
-
D.
$225.\left( { - 18} \right) = - 4050$
Chọn câu đúng.
-
A.
\(\left( { - 20} \right).\left( { - 5} \right) = - 100\)
-
B.
\(\left( { - 50} \right).\left( { - 12} \right) = 600\)
-
C.
\(\left( { - 18} \right).25 = - 400\)
-
D.
\(11.\left( { - 11} \right) = - 1111\)
Tích \(\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right)\) bằng
-
A.
\({3^8}\)
-
B.
\( - {3^7}\)
-
C.
\({3^7}\)
-
D.
\({\left( { - 3} \right)^8}\)
Tính nhanh $\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)$ ta được kết quả là
-
A.
\( - 200000\)
-
B.
\( - 2000000\)
-
C.
\(200000\)
-
D.
\( - 100000\)
Chọn câu đúng.
-
A.
\(\left( { - 23} \right).\left( { - 16} \right) > 23.\left( { - 16} \right)\)
-
B.
\(\left( { - 23} \right).\left( { - 16} \right) = 23.\left( { - 16} \right)\)
-
C.
\(\left( { - 23} \right).\left( { - 16} \right) < 23.\left( { - 16} \right)\)
-
D.
\(\left( { - 23} \right).16 > 23.\left( { - 6} \right)\)
Tính hợp lý \(A = - 43.18 - 82.43 - 43.100\)
-
A.
\(0\)
-
B.
\( - 86000\)
-
C.
\( - 8600\)
-
D.
\( - 4300\)
Cho $Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)$, chọn câu đúng.
-
A.
\( - 17\)
-
B.
\(0\)
-
C.
\(1700\)
-
D.
\( - 1700\)
Cho \(\left( { - 4} \right).\left( {x - 3} \right) = 20.\) Tìm $x:$
-
A.
\(8\)
-
B.
\( - 5\)
-
C.
\( - 2\)
-
D.
Một kết quả khác
Giá trị biểu thức: \(15x - 23\) với \(x = - 1\) là:
-
A.
\( - 8\)
-
B.
\( 8\)
-
C.
\( 38\)
-
D.
\( -38\)
+) Tích ba số nguyên âm là một số nguyên ..(1)..
+) Tích hai số nguyên âm với một số nguyên dương là một số nguyên …(2)…
Từ thích hợp để điền vào hai chỗ chấm trên lần lượt là:
-
A.
âm, âm
-
B.
dương, âm
-
C.
âm, dương
-
D.
dương, dương
Khẳng định nào sau đây đúng:
-
A.
\(( - 2).( - 3).4.( - 5) > 0\)
-
B.
\(( - 2).( - 3).4.( - 5) < 0\)
-
C.
\(( - 2).( - 3).4.( - 5) = 120\)
-
D.
\(( - 2).( - 3).4.( - 5) = 0\)
Cho $a,b \in Z$ và $b \ne 0.$ Nếu có số nguyên $q$ sao cho $a = bq$ thì
-
A.
\(a\) là ước của \(b\)
-
B.
\(b\) là ước của \(a\)
-
C.
\(a\) là bội của \(b\)
-
D.
Cả B, C đều đúng.
Các bội của $6$ là:
-
A.
\( - 6;\,\;6;\;\,0;\,\;23;\, - 23\)
-
B.
\(132;\, - 132;\;\,16\)
-
C.
\( - 1;\,\;1;\,\;6;\, - 6\)
-
D.
\(0;\;\,6;\, - 6;\;\,12;\, - 12;\,...\)
Có bao nhiêu ước của \( - 24.\)
-
A.
$9$
-
B.
$17$
-
C.
$8$
-
D.
$16$
Tìm $x,$ biết: $12\; \vdots \;x$ và $x < - 2$
-
A.
\(\left\{ { - 1} \right\}\)
-
B.
\(\left\{ { - 3; - 4; - 6; - 12} \right\}\)
-
C.
\(\left\{ { - 2; - 1} \right\}\)
-
D.
\(\left\{ { - 2; - 1;1;2;3;4;6;12} \right\}\)
Tìm $x$ biết: \(25.x = - 225\)
-
A.
\(x = - 25\)
-
B.
\(x = 5\)
-
C.
\(x = - 9\)
-
D.
\(x = 9\)
Giá trị nào dưới đây của \(x\) thỏa mãn \( - 6\left( {x + 7} \right) = 96?\)
-
A.
\(x = 95\)
-
B.
\(x = - 16\)
-
C.
\(x = - 23\)
-
D.
\(x = 96\)
Trong các phát biểu sau đây, phát biểu nào đúng?
-
A.
\( - 24\) chia hết cho \(5\)
-
B.
\(36\) không chia hết cho \( - 12\)
-
C.
\( - 18\) chia hết cho \( - 6\)
-
D.
\( - 26\) không chia hết cho \( - 13\)
Có bao nhiêu cách phân tích số 21 thành tích của hai số nguyên
-
A.
8
-
B.
3
-
C.
4
-
D.
6
Phát biểu nào sau đây đúng?
-
A.
Ước của một số nguyên âm là các số nguyên âm
-
B.
Ước của một số nguyên dương là một số nguyên dương.
-
C.
Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\).
-
D.
Nếu \(b\) là ước của \(a\) thì \( - b\) là bội của \(a\).
Số các ước nguyên của số nguyên tố \(p\) là:
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(3\)
-
D.
\(4\)
Các số nguyên \(x\) thỏa mãn: \( - 8\) chia hết cho \(x\) là:
-
A.
\( - 1;\, - 2;\, - 4;\, - 8\)
-
B.
\(1;\, - 1;\,2;\, - 2;\,4;\, - 4\)
-
C.
\(1;\,2;\,4;\,8\)
-
D.
\(1;\, - 1;\,2;\, - 2;\,4;\, - 4;\,8;\, - 8\)
Lời giải và đáp án
Kết quả của phép tính \(\left( { - 125} \right).8\) là:
-
A.
$1000$
-
B.
$ - 1000$
-
C.
$ - 100$
-
D.
$ - 10000$
Đáp án : B
Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu $\left( - \right)$ trước kết quả nhận được.
\(\left( { - 125} \right).8 = - \left( {125.8} \right) = - 1000\)
Chọn câu sai.
-
A.
$\left( { - 5} \right).25 = - 125$
-
B.
$6.\left( { - 15} \right) = - 90$
-
C.
$125.\left( { - 20} \right) = - 250$
-
D.
$225.\left( { - 18} \right) = - 4050$
Đáp án : C
Tính toán các kết quả của từng đáp án rồi kết luận:
Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu $\left( - \right)$ trước kết quả nhận được.
Đáp án A: $\left( { - 5} \right).25 = - 125$ nên $A$ đúng.
Đáp án B: $6.\left( { - 15} \right) = - 90$ nên \(B\) đúng.
Đáp án C: $125.\left( { - 20} \right) = - 2500 \ne - 250$ nên \(C\) sai.
Đáp án D: $225.\left( { - 18} \right) = - 4050$ nên \(D\) đúng.
Chọn câu đúng.
-
A.
\(\left( { - 20} \right).\left( { - 5} \right) = - 100\)
-
B.
\(\left( { - 50} \right).\left( { - 12} \right) = 600\)
-
C.
\(\left( { - 18} \right).25 = - 400\)
-
D.
\(11.\left( { - 11} \right) = - 1111\)
Đáp án : B
Áp dụng quy tắc nhân hai số nguyên cùng dấu, khác dấu để tính kết quả của từng đáp án và kết luận.
Đáp án A: \(\left( { - 20} \right).\left( { - 5} \right) = 100\) nên \(A\) sai.
Đáp án B: \(\left( { - 50} \right).\left( { - 12} \right) = 600\) nên \(B\) đúng.
Đáp án C: \(\left( { - 18} \right).25 = - 450 \ne - 400\) nên \(C\) sai.
Đáp án D: \(11.\left( { - 11} \right) = - 121 \ne - 1111\) nên \(D\) sai.
Tích \(\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right)\) bằng
-
A.
\({3^8}\)
-
B.
\( - {3^7}\)
-
C.
\({3^7}\)
-
D.
\({\left( { - 3} \right)^8}\)
Đáp án : B
Sử dụng định nghĩa lũy thừa số mũ tự nhiên: \({a^n} = a.a...a\) (\(n\) thừa số \(a\)) với \(a \ne 0\)
Chú ý: Với \(a > 0\) và \(n \in N\) thì \({\left( { - a} \right)^n} = \left\{ \begin{array}{l}{a^n}\,\,\,\,\,khi\,n = 2k\\ - {a^n}\,khi\,n = 2k + 1\end{array} \right.\) với $ k \in N^*$
Ta có:
\(\begin{array}{l}\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right)\\ = {\left( { - 3} \right)^7} = - {3^7}\end{array}\)
Tính nhanh $\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)$ ta được kết quả là
-
A.
\( - 200000\)
-
B.
\( - 2000000\)
-
C.
\(200000\)
-
D.
\( - 100000\)
Đáp án : A
Nhóm các cặp có tích là số tròn chục, tròn trăm, tròn nghìn... để tính nhanh.
$\begin{array}{l}\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)\\ = \left[ {125.\left( { - 8} \right)} \right].\left[ {\left( { - 5} \right).20} \right].\left( { - 2} \right)\\ = - \left( {125.8} \right).\left[ { - \left( {5.20} \right)} \right].\left( { - 2} \right)\\ = \left( { - 1000} \right).\left( { - 100} \right).\left( { - 2} \right)\\ = 100000.\left( { - 2} \right) = - 200000\end{array}$
Chọn câu đúng.
-
A.
\(\left( { - 23} \right).\left( { - 16} \right) > 23.\left( { - 16} \right)\)
-
B.
\(\left( { - 23} \right).\left( { - 16} \right) = 23.\left( { - 16} \right)\)
-
C.
\(\left( { - 23} \right).\left( { - 16} \right) < 23.\left( { - 16} \right)\)
-
D.
\(\left( { - 23} \right).16 > 23.\left( { - 6} \right)\)
Đáp án : A
So sánh các vế ở mỗi đáp án bằng cách nhận xét tính dương, âm của các tích.
Đáp án A: \(\left( { - 23} \right).\left( { - 16} \right) > 23.\left( { - 16} \right)\) đúng vì \(VT > 0,VP < 0\)
Đáp án B: \(\left( { - 23} \right).\left( { - 16} \right) = 23.\left( { - 16} \right)\) sai vì \(VT > 0,VP < 0\) nên \(VT \ne VP\)
Đáp án C: \(\left( { - 23} \right).\left( { - 16} \right) < 23.\left( { - 16} \right)\) sai vì \(VT > 0,VP < 0\) nên \(VT > VP\)
Đáp án D: \(\left( { - 23} \right).16 > 23.\left( { - 6} \right)\) sai vì:
\(\left( { - 23} \right).16 = - 368\) và \(23.\left( { - 6} \right) = - 138\) mà \( - 368 < - 138\) nên \(\left( { - 23} \right).16 < 23.\left( { - 6} \right)\)
Tính hợp lý \(A = - 43.18 - 82.43 - 43.100\)
-
A.
\(0\)
-
B.
\( - 86000\)
-
C.
\( - 8600\)
-
D.
\( - 4300\)
Đáp án : C
Sử dụng tính chất phân phối của phép nhân đối với phép trừ:
$a.b - a.c = a.\left( {b - c} \right)$.
\(\begin{array}{l}A = - 43.18 - 82.43 - 43.100\\A = 43.\left( { - 18 - 82 - 100} \right)\\A = 43.\left[ { - \left( {18 + 82 + 100} \right)} \right]\\A = 43.\left( { - 200} \right)\\A = - 8600\end{array}\)
Cho $Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)$, chọn câu đúng.
-
A.
\( - 17\)
-
B.
\(0\)
-
C.
\(1700\)
-
D.
\( - 1700\)
Đáp án : B
Sử dụng tính chất phân phối của phép nhân: $a.b - a.c - a.d = a.\left( {b - c - d} \right)$
$\begin{array}{l}Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)\\Q = - 135.17 - 121.17 + 256.17\\Q = 17.\left( { - 135 - 121 + 256} \right)\\Q = 17.\left( { - 256 + 256} \right)\\Q = 17.0\\Q = 0\end{array}$
Cho \(\left( { - 4} \right).\left( {x - 3} \right) = 20.\) Tìm $x:$
-
A.
\(8\)
-
B.
\( - 5\)
-
C.
\( - 2\)
-
D.
Một kết quả khác
Đáp án : C
+ Sử dụng quy tắc nhân hai số nguyên cùng dấu để tìm ra giá trị của \(x - 3\)
+ Sau đó áp dụng quy tắc chuyển vế và tính chất tổng đại số để tìm $x.$
Vì \(\left( { - 4} \right).\left( { - 5} \right) = 4.5 = 20\) nên để \(\left( { - 4} \right).\left( {x - 3} \right) = 20\) thì \(x - 3 = - 5\)
Khi đó ta có:
\(\begin{array}{l}x - 3 = - 5\\x = - 5 + 3\\x = - 2\end{array}\)
Vậy \(x = - 2\).
Giá trị biểu thức: \(15x - 23\) với \(x = - 1\) là:
-
A.
\( - 8\)
-
B.
\( 8\)
-
C.
\( 38\)
-
D.
\( -38\)
Đáp án : D
Bước 1: Thay \(x=-1\) vào biểu thức
Bước 2: Thực hiện phép nhân hai số nguyên trái dấu
Bước 3: Thực hiện phép trừ.
Thay \(x = - 1\) vào biểu thức ta được:
\(15.\left( { - 1} \right) - 23 = \left( { - 15} \right) - 23 = \left( { - 15} \right) + \left( { - 23} \right) = - 38\)
+) Tích ba số nguyên âm là một số nguyên ..(1)..
+) Tích hai số nguyên âm với một số nguyên dương là một số nguyên …(2)…
Từ thích hợp để điền vào hai chỗ chấm trên lần lượt là:
-
A.
âm, âm
-
B.
dương, âm
-
C.
âm, dương
-
D.
dương, dương
Đáp án : C
- Tích của hai số nguyên trái dấu là số nguyên âm.
- Tính của hai số nguyên cùng dấu là số nguyên dương.
Tích ba số nguyên âm là một số nguyên âm.
Tích hai số nguyên âm với một số nguyên dương là một số nguyên dương
Khẳng định nào sau đây đúng:
-
A.
\(( - 2).( - 3).4.( - 5) > 0\)
-
B.
\(( - 2).( - 3).4.( - 5) < 0\)
-
C.
\(( - 2).( - 3).4.( - 5) = 120\)
-
D.
\(( - 2).( - 3).4.( - 5) = 0\)
Đáp án : B
- Sử dụng quy tắc: Tích của lẻ các số âm là một số âm
- Sử dụng tính chất: đổi chỗ hai thừa số bất kì trong một tích để tính nhanh.
\(( - 2).( - 3).4.( - 5) = ( - 2).( - 5).( - 3).4 = 10.\left( { - 12} \right) = - 120 < 0\)
Cho $a,b \in Z$ và $b \ne 0.$ Nếu có số nguyên $q$ sao cho $a = bq$ thì
-
A.
\(a\) là ước của \(b\)
-
B.
\(b\) là ước của \(a\)
-
C.
\(a\) là bội của \(b\)
-
D.
Cả B, C đều đúng.
Đáp án : D
Với $a,b \in Z$ và $b \ne 0.$ Nếu có số nguyên $q$ sao cho $a = bq$ thì \(a\) là bội của \(b\) và \(b\) là ước của \(a\)
Các bội của $6$ là:
-
A.
\( - 6;\,\;6;\;\,0;\,\;23;\, - 23\)
-
B.
\(132;\, - 132;\;\,16\)
-
C.
\( - 1;\,\;1;\,\;6;\, - 6\)
-
D.
\(0;\;\,6;\, - 6;\;\,12;\, - 12;\,...\)
Đáp án : D
Sử dụng khái niệm bội và ước của một số nguyên:
Nếu $a,b,x \in Z$ và $a = b.x$ thì $a \vdots b$ và $a$ là một bội của $b;b$ là một ước của $a$
Bội của $6$ là số $0$ và những số nguyên có dạng \(6k\,\left( {k \in {Z^*}} \right)\)
Các bội của $6$ là: \(0;\;\,6;\, - 6;\;\,12;\, - 12;\,...\)
Có bao nhiêu ước của \( - 24.\)
-
A.
$9$
-
B.
$17$
-
C.
$8$
-
D.
$16$
Đáp án : D
Để tìm tất cả các ước của một số nguyên âm ta chỉ cần tìm tất cả các ước của số đối của số nguyên âm đó. Trước tiên ta tìm ước tự nhiên rồi thêm các ước đối của chúng.
Có \(8\) ước tự nhiên của \(24\) là: \(1;2;3;4;6;8;12;24\)
Có \(8\) ước nguyên âm của \(24\) là: \(-1;-2;-3;-4;-6;-8;-12;-24\)
Vậy có \(8.2 = 16\) ước của \( 24\) nên cũng có $16$ ước của $-24.$
Tìm $x,$ biết: $12\; \vdots \;x$ và $x < - 2$
-
A.
\(\left\{ { - 1} \right\}\)
-
B.
\(\left\{ { - 3; - 4; - 6; - 12} \right\}\)
-
C.
\(\left\{ { - 2; - 1} \right\}\)
-
D.
\(\left\{ { - 2; - 1;1;2;3;4;6;12} \right\}\)
Đáp án : B
+ Bước 1: Tìm Ư$\left( {12} \right)$
+ Bước 2: Tìm các giá trị là ước của $12$ nhỏ hơn $ - 2$
Tập hợp ước của \(12\) là: \(A = \left\{ { \pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 12} \right\}\)
Vì \(x < - 2\) nên \(x \in \left\{ { - 3; - 4; - 6; - 12} \right\}\)
Tìm $x$ biết: \(25.x = - 225\)
-
A.
\(x = - 25\)
-
B.
\(x = 5\)
-
C.
\(x = - 9\)
-
D.
\(x = 9\)
Đáp án : C
Tìm thừa số chưa biết trong một phép nhân: Ta lấy tích chia cho thừa số đã biết.
\(\begin{array}{l}25.x = - 225\\x = - 225:25\\x = - 9\end{array}\)
Giá trị nào dưới đây của \(x\) thỏa mãn \( - 6\left( {x + 7} \right) = 96?\)
-
A.
\(x = 95\)
-
B.
\(x = - 16\)
-
C.
\(x = - 23\)
-
D.
\(x = 96\)
Đáp án : C
\(\begin{array}{l} - 6\left( {x + 7} \right) = 96\\x + 7 = 96:\left( { - 6} \right)\\x + 7 = - 16\\x = - 16 - 7\\x = - 23\end{array}\)
Trong các phát biểu sau đây, phát biểu nào đúng?
-
A.
\( - 24\) chia hết cho \(5\)
-
B.
\(36\) không chia hết cho \( - 12\)
-
C.
\( - 18\) chia hết cho \( - 6\)
-
D.
\( - 26\) không chia hết cho \( - 13\)
Đáp án : C
Cho \(a,b \in \mathbb{Z}\) và \(b \ne 0\). Nếu có số nguyên \(q\) sao cho \(a = bq\) thì:
Ta nói \(a\) chia hết cho \(b\), kí hiệu là \(a \vdots b\).
Ta có: \( - 18 = \left( { - 6} \right).3\) nên \( - 18\) chia hết cho \( - 6\) => C đúng
Có bao nhiêu cách phân tích số 21 thành tích của hai số nguyên
-
A.
8
-
B.
3
-
C.
4
-
D.
6
Đáp án : C
- Phân tích số 21 thành tích của hai số nguyên dương
- Suy ra các cách phân tích khác nhờ đổi dấu hai thừa số
Ta có hai cách phân tích 21 thành tích hai số nguyên dương là: \(21 = 3.7 = 1.21\)
Từ đó suy ra các 2 cách phân tích khác nhờ đổi dấu hai thừa số:
\(21 = \left( { - 3} \right).\left( { - 7} \right) = \left( { - 1} \right).\left( { - 21} \right)\)
Vậy ta có bốn cách phân tích.
Phát biểu nào sau đây đúng?
-
A.
Ước của một số nguyên âm là các số nguyên âm
-
B.
Ước của một số nguyên dương là một số nguyên dương.
-
C.
Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\).
-
D.
Nếu \(b\) là ước của \(a\) thì \( - b\) là bội của \(a\).
Đáp án : C
Cho \(a,b \in \mathbb{Z}\). Nếu \(a \vdots b\) thì ta nói \(a\) là bội của \(b\) và \(b\) là ước của \(a\).
Ước của một số nguyên âm bao gồm cả số nguyên âm và nguyên dương => A, B sai
Nếu \(b\) là ước của \(a\) thì \( - b\) cũng là ước của \(a\) => D sai
Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\) => C đúng
Số các ước nguyên của số nguyên tố \(p\) là:
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(3\)
-
D.
\(4\)
Đáp án : D
Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước tự nhiên là 1 và chính nó.
Số nguyên tố \(p\) có các ước là: \( - 1;\,1;\,p;\, - p\)
Vậy số nguyên tố \(p\) có \(4\) ước nguyên.
Các số nguyên \(x\) thỏa mãn: \( - 8\) chia hết cho \(x\) là:
-
A.
\( - 1;\, - 2;\, - 4;\, - 8\)
-
B.
\(1;\, - 1;\,2;\, - 2;\,4;\, - 4\)
-
C.
\(1;\,2;\,4;\,8\)
-
D.
\(1;\, - 1;\,2;\, - 2;\,4;\, - 4;\,8;\, - 8\)
Đáp án : D
\( - 8\) chia hết cho \(x\) => \(x\) là các ước của \( - 8\)
\( - 8\) chia hết cho \(x\) => \(x\) là các ước của \( - 8\).
Suy ra \(x \in \left\{ {1;\, - 1;\,2;\, - 2;\,4;\, - 4;\,8;\, - 8} \right\}\)
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân, phép chia các số nguyên học Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân, phép chia các số nguyên (tiếp) Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập cuối chương II Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng, phép trừ các số nguyên (tiếp) Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng, phép trừ các số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép trừ các số nguyên. Quy tắc dấu ngoặc học Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Phép cộng các số nguyên học Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về thứ tự trong tập hợp số nguyên học Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Thứ tự trong tập hợp số nguyên học Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tập hợp các số nguyên học Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Tập hợp các số nguyên học Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Số nguyên âm Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết