Trắc nghiệm Tính chất cơ bản của phân số Toán 6 Cánh diều
Đề bài
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
-
A.
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
-
B.
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
-
C.
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
-
D.
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
-
A.
$\left\{ {1; - 1} \right\}$
-
B.
\(\left\{ 2 \right\}\)
-
C.
\(\left\{ {1;2} \right\}\)
-
D.
\(\left\{ {1;2;3} \right\}\)
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
-
A.
\(a = 3,b = - 259\)
-
B.
\(a = - 3,b = - 259\)
-
C.
\(a = 3,b = 259\)
-
D.
\(a = - 3,b = 259\)
Phân số nào dưới đây là phân số tối giản?
-
A.
\(\dfrac{{ - 2}}{4}\)
-
B.
\(\dfrac{{ - 15}}{{ - 96}}\)
-
C.
\(\dfrac{{13}}{{27}}\)
-
D.
\(\dfrac{{ - 29}}{{58}}\)
Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:
-
A.
\(\dfrac{1}{2}\)
-
B.
\(\dfrac{6}{8}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\(\dfrac{{ - 3}}{4}\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
-
A.
\(\dfrac{4}{9}\)
-
B.
\(31\)
-
C.
\( - 1\)
-
D.
\(4\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
-
A.
\(101\)
-
B.
\(32\)
-
C.
\( - 23\)
-
D.
\(23\)
Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:
-
A.
\(\dfrac{{ - 1}}{7}\)
-
B.
\(\dfrac{{ - 1}}{{14}}\)
-
C.
\(\dfrac{4}{{ - 56}}\)
-
D.
\(\dfrac{{ - 1}}{{70}}\)
Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được
-
A.
\(\dfrac{{ - 13}}{{25}}\)
-
B.
\(\dfrac{{ - 18}}{{25}}\)
-
C.
\(\dfrac{{ - 6}}{{25}}\)
-
D.
\(\dfrac{{ - 39}}{{50}}\)
Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?
-
A.
\(\dfrac{{ - 13}}{{22}}\)
-
B.
\(\dfrac{{13}}{{22}}\)
-
C.
\(\dfrac{{ - 13}}{{18}}\)
-
D.
\(\dfrac{{ - 117}}{{198}}\)
Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:
-
A.
\(\dfrac{a}{2}\)
-
B.
\(\dfrac{1}{2}\)
-
C.
\(\dfrac{{ - 1}}{2}\)
-
D.
\(\dfrac{{ - a}}{2}\)
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
-
A.
\(\dfrac{m}{n}\)
-
B.
\(\dfrac{n}{m}\)
-
C.
\(\dfrac{{ - n}}{m}\)
-
D.
\(\dfrac{m}{{ - n}}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
-
A.
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
-
B.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
-
C.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
-
D.
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
-
A.
$180$
-
B.
\(500\)
-
C.
\(750\)
-
D.
\(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
-
A.
\({3^3}{.7^2}\)
-
B.
\({3^3}{.7^3}.11.19\)
-
C.
\({3^2}{.7^2}.11.19\)
-
D.
\({3^3}{.7^2}.11.19\)
Lời giải và đáp án
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
-
A.
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
-
B.
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
-
C.
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
-
D.
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Đáp án : B
Áp dụng tính chất cơ bản của phân số
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\).
Dựa vào các tính chất cơ bản của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\) và \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\) thì các đáp án A, C, D đều đúng.
Đáp án B sai.
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
-
A.
$\left\{ {1; - 1} \right\}$
-
B.
\(\left\{ 2 \right\}\)
-
C.
\(\left\{ {1;2} \right\}\)
-
D.
\(\left\{ {1;2;3} \right\}\)
Đáp án : A
Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
-
A.
\(a = 3,b = - 259\)
-
B.
\(a = - 3,b = - 259\)
-
C.
\(a = 3,b = 259\)
-
D.
\(a = - 3,b = 259\)
Đáp án : A
Sử dụng tính chất của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\)
Ta có:
\(\dfrac{{24}}{{56}} = \dfrac{{24:8}}{{56:8}} = \dfrac{3}{7} = \dfrac{a}{7} \Rightarrow a = 3\)
\(\dfrac{3}{7} = \dfrac{{3.\left( { - 37} \right)}}{{7.\left( { - 37} \right)}} = \dfrac{{ - 111}}{{ - 259}} = \dfrac{{ - 111}}{b} \Rightarrow b = - 259\)
Vậy \(a = 3,b = - 259\)
Phân số nào dưới đây là phân số tối giản?
-
A.
\(\dfrac{{ - 2}}{4}\)
-
B.
\(\dfrac{{ - 15}}{{ - 96}}\)
-
C.
\(\dfrac{{13}}{{27}}\)
-
D.
\(\dfrac{{ - 29}}{{58}}\)
Đáp án : C
Định nghĩa phân số tối giản:
Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$
Do đó ta chỉ cần tìm \(ƯCLN\) của giá trị tuyệt đối của tử và mẫu phân số, nếu \(ƯCLN\) đó là \(1\) thì phân số đã cho tối giản.
Đáp án A: \(ƯCLN\left( {2;4} \right) = 2 \ne 1\) nên loại.
Đáp án B: \(ƯCLN\left( {15;96} \right) = 3 \ne 1\) nên loại.
Đáp án C: \(ƯCLN\left( {13;27} \right) = 1\) nên C đúng.
Đáp án D: \(ƯCLN\left( {29;58} \right) = 29 \ne 1\) nên D sai.
Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:
-
A.
\(\dfrac{1}{2}\)
-
B.
\(\dfrac{6}{8}\)
-
C.
\(\dfrac{3}{4}\)
-
D.
\(\dfrac{{ - 3}}{4}\)
Đáp án : C
- Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.
Ta có: \(ƯCLN\left( {600,800} \right) = 200\) nên:
\(\dfrac{{600}}{{800}} = \dfrac{{600:200}}{{800:200}} = \dfrac{3}{4}\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
-
A.
\(\dfrac{4}{9}\)
-
B.
\(31\)
-
C.
\( - 1\)
-
D.
\(4\)
Đáp án : D
- Tính tử và mẫu của phân số đã cho và rút gọn phân số đó.
Ta có:
\(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}} = \dfrac{{ - 6 + 30}}{{54}}\) \( = \dfrac{{24}}{{54}} = \dfrac{{24:6}}{{54:6}} = \dfrac{4}{9}\)
Vậy tử số của phân số cần tìm là \(4\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
-
A.
\(101\)
-
B.
\(32\)
-
C.
\( - 23\)
-
D.
\(23\)
Đáp án : D
Rút gọn phân số đã cho: Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.
Ta có: \(\dfrac{{2323}}{{3232}} = \dfrac{{2323:101}}{{3232:101}}\)\( = \dfrac{{23}}{{32}} = \dfrac{x}{{32}} \Rightarrow x = 23\)
Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:
-
A.
\(\dfrac{{ - 1}}{7}\)
-
B.
\(\dfrac{{ - 1}}{{14}}\)
-
C.
\(\dfrac{4}{{ - 56}}\)
-
D.
\(\dfrac{{ - 1}}{{70}}\)
Đáp án : B
Tách các thừa số ở tử và mẫu thành tích các thừa số nhỏ hơn rồi chia cả tử và mẫu cho các thừa số chung.
Ta có:
\(\dfrac{{4.8}}{{64.\left( { - 7} \right)}} = \dfrac{{4.8}}{{2.4.8.\left( { - 7} \right)}} = \dfrac{1}{{2.\left( { - 7} \right)}} = \dfrac{{ - 1}}{{14}}\)
Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được
-
A.
\(\dfrac{{ - 13}}{{25}}\)
-
B.
\(\dfrac{{ - 18}}{{25}}\)
-
C.
\(\dfrac{{ - 6}}{{25}}\)
-
D.
\(\dfrac{{ - 39}}{{50}}\)
Đáp án : D
- Phân tích tử của \(A\) thành các nhân tử.
- Rút gọn biểu thức bằng cách chia cả tử và mẫu của \(A\) cho nhân tử chung.
Ta có:
\(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\)\( = \dfrac{{\left[ {3.\left( { - 4} \right) - 1} \right].60}}{{50.20}}\)\( = \dfrac{{ - 13.60}}{{50.20}} = \dfrac{{ - 13.3}}{{50}} = \dfrac{{ - 39}}{{50}}\)
Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?
-
A.
\(\dfrac{{ - 13}}{{22}}\)
-
B.
\(\dfrac{{13}}{{22}}\)
-
C.
\(\dfrac{{ - 13}}{{18}}\)
-
D.
\(\dfrac{{ - 117}}{{198}}\)
Đáp án : A
- Phân tích các thừa số trong tích ở cả tử và mẫu thành tích các thừa số nguyên tố.
- Chia cả tử và mẫu của biểu thức cho từng lũy thừa chung ở tử và mẫu mà có số mũ nhỏ hơn.
\(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}} = \dfrac{{{{2.3}^2}{{.2}^2}.13}}{{2.11.\left( { - {2^3}{{.3}^2}} \right)}}\)\( = \dfrac{{{2^3}{{.3}^2}.13}}{{ - {2^4}{{.3}^2}.11}} = \dfrac{{13}}{{ - 2.11}} = \dfrac{{ - 13}}{{22}}\)
Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:
-
A.
\(\dfrac{a}{2}\)
-
B.
\(\dfrac{1}{2}\)
-
C.
\(\dfrac{{ - 1}}{2}\)
-
D.
\(\dfrac{{ - a}}{2}\)
Đáp án : D
Ta có: \(\dfrac{{ - 12a}}{{24}} = \dfrac{{\left( { - 1} \right).12.a}}{{12.2}} = \dfrac{{\left( { - 1} \right).a}}{2} = \dfrac{{ - a}}{2}\).
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
-
A.
\(\dfrac{m}{n}\)
-
B.
\(\dfrac{n}{m}\)
-
C.
\(\dfrac{{ - n}}{m}\)
-
D.
\(\dfrac{m}{{ - n}}\)
Đáp án : A
Ta có: \(\dfrac{{ - m}}{{ - n}} = \dfrac{m}{n}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
-
A.
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
-
B.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
-
C.
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
-
D.
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Đáp án : A
Đưa các phân số về có mẫu dương hết rồi quy đồng mẫu số các phân số.
+) Tìm $MSC$ (thường là $BCNN$ của các mẫu).
+) Tìm thừa số phụ $ = {\rm{ }}MSC{\rm{ }}:{\rm{ }}MS$
+) Nhân cả tử và mẫu với thừa số phụ tương ứng
Ta quy đồng \(\dfrac{2}{7}\) và \(\dfrac{{ - 5}}{8}\) (\(MSC:56\))
\(\dfrac{2}{7} = \dfrac{{2.8}}{{7.8}} = \dfrac{{16}}{{56}};\) \(\dfrac{{ - 5}}{8} = \dfrac{{ - 5.7}}{{8.7}} = \dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
-
A.
$180$
-
B.
\(500\)
-
C.
\(750\)
-
D.
\(450\)
Đáp án : D
- Phân tích các mẫu số thành tích các thừa số nguyên tố.
- \(MSC\) được chọn thường là \(BCNN\) của các mẫu số.
Ta có:
\(\begin{array}{l}5 = 5.1\\18 = {2.3^2}\\75 = {3.5^2}\end{array}\)
\( \Rightarrow BCNN\left( {5;18;75} \right) = {2.3^2}{.5^2} = 450\)
Vậy ta có thể chọn một mẫu chung là \(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
-
A.
\({3^3}{.7^2}\)
-
B.
\({3^3}{.7^3}.11.19\)
-
C.
\({3^2}{.7^2}.11.19\)
-
D.
\({3^3}{.7^2}.11.19\)
Đáp án : D
Mẫu chung nguyên dương nhỏ nhất của các phân số là \(BCNN\) của các mẫu.
\(BCNN\) hay mẫu chung nguyên dương nhỏ nhất của hai mẫu đã cho là \({3^3}{.7^2}.11.19\)
Luyện tập và củng cố kiến thức Các dạng toán về tính chất cơ bản của phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: So sánh phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Hỗn số dương Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Phép cộng, phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng, phép trừ phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phép nhân, phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép nhân, phép chia phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Số thập phân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6,7: Các phép tính với số thập phân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 8: Ước lượng và làm tròn số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 9: Tỉ số. Tỉ số phần trăm Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 10: Hai bài toán về phân số Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập cuối chương V Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phân số với tử và mẫu là số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Phân số với tử và mẫu là số nguyên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết