Đề bài

Số các ước nguyên của số nguyên tố \(p\) là:

  • A.
    \(1\)
  • B.
    \(2\)
  • C.
    \(3\)
  • D.
    \(4\)
Phương pháp giải

Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước tự nhiên là 1 và chính nó.

Lời giải của GV Loigiaihay.com

Số nguyên tố \(p\) có các ước là: \( - 1;\,1;\,p;\, - p\)

Vậy số nguyên tố \(p\)\(4\) ước nguyên.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Cho $a,b \in Z$ và $b \ne 0.$ Nếu có số nguyên $q$ sao cho $a = bq$  thì

Xem lời giải >>
Bài 2 :

Các bội của $6$  là:

Xem lời giải >>
Bài 3 :

Tập hợp các ước của $ - 8$ là:

Xem lời giải >>
Bài 4 :

Có bao nhiêu ước của \( - 24.\)

Xem lời giải >>
Bài 5 :

Tập hợp tất cả các bội của $7$ có giá trị tuyệt đối nhỏ hơn $50$ là:

Xem lời giải >>
Bài 6 :

Tìm $x,$  biết:  $12\; \vdots \;x$  và $x <  - 2$

Xem lời giải >>
Bài 7 :

Có bao nhiêu số nguyên \(x\)  biết:  $x\; \vdots \;5$  và $\left| x \right| < 30?$

Xem lời giải >>
Bài 8 :

Giá trị lớn nhất của $a$ thỏa mãn $a + 4$ là ước của $9$ là:

Xem lời giải >>
Bài 9 :

Tìm $x$  biết: \(25.x =  - 225\)

Xem lời giải >>
Bài 10 :

Cho \(x \in \mathbb{Z}\) và \(\left( { - 154 + x} \right) \vdots \, 3\) thì:

Xem lời giải >>
Bài 11 :

Tìm tất cả các ước chung của $ - 18$ và $30.$

Xem lời giải >>
Bài 12 :

Giá trị nào dưới đây của \(x\) thỏa mãn \( - 6\left( {x + 7} \right) = 96?\)

Xem lời giải >>
Bài 13 :

Tìm $n \in Z,$  biết: $\left( {n{\rm{ }} + 5} \right) \vdots \left( {n{\rm{ }} + 1} \right)$

Xem lời giải >>
Bài 14 :

Có bao nhiêu số nguyên $a < 5$ biết: $10$ là bội của $\left( {2a + 5} \right)$

Xem lời giải >>
Bài 15 :

Có bao nhiêu cặp số \(\left( {x;y} \right)\) nguyên biết: \(\left( {x - 1} \right)\left( {y + 1} \right) = 3?\)

Xem lời giải >>
Bài 16 :

Tìm $x,$ biết: $x \, \vdots \, 6$ và $24 \, \vdots \, x$

Xem lời giải >>
Bài 17 :

Tìm số nguyên \(x\) thỏa mãn \({\left( { - 9} \right)^2}.x = 150 + 12.13x\)

Xem lời giải >>
Bài 18 :

Cho \(a\) và \(b\) là hai số nguyên khác \(0.\) Biết \(a \, \vdots \, b\) và \(b \, \vdots \, a.\) Khi đó

Xem lời giải >>
Bài 19 :

Gọi \(A\) là tập hợp các giá trị $n \in Z$ để \(\left( {{n^2} - 7} \right)\) là bội của \(\left( {n + 3} \right)\). Tổng các phần tử của \(A\) bằng:

Xem lời giải >>
Bài 20 :

Cho \(x;\,y \in \mathbb{Z}\).  Nếu \(5x + 46y\) chia hết cho $16$  thì \(x + 6y\) chia hết cho

Xem lời giải >>