Bài 9 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo>
Tính đạo hàm của các hàm số sau:
Đề bài
Tinh đạo hàm của các hàm số sau:
a) \(y = \tan \left( {{e^x} + 1} \right)\);
b) \(y = \sqrt {\sin 3x} \);
c) \(y = \cot \left( {1 - {2^x}} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính đạo hàm của hàm hợp: \(y{'_x} = y{'_u}.u{'_x}\).
Lời giải chi tiết
a) \(y' = \left( {\tan ({e^x} + 1)} \right)' = \frac{{({e^x} + 1)'}}{{{\rm{co}}{{\rm{s}}^2}({e^x} + 1)}} = \frac{{{e^x}}}{{{\rm{co}}{{\rm{s}}^2}({e^x} + 1)}}\)
b) \(y' = \left( {\cot (1 - {2^x})} \right)' = - \frac{{(1 - {2^x})'}}{{{{\sin }^2}(1 - {2^x})}} = - \frac{{ - {2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)\(y' = \left( {\sqrt {\sin 3x} } \right)' = \frac{{(\sin 3x)'}}{{2\sqrt {\sin 3x} }} = \frac{{3\cos 3x}}{{2\sqrt {\sin 3x} }}\)
c) \(y' = \left( {\cot (1 - {2^x})} \right)' = - \frac{{(1 - {2^x})'}}{{{{\sin }^2}(1 - {2^x})}} = - \frac{{ - {2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)\( = \frac{{{2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)
- Bài 10 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 11 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 12 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 13 trang 52 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 14 trang 52 SGK Toán 11 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo