Bài 4 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo>
Tính giá trị các biểu thức sau:
Đề bài
Tính giá trị các biểu thức sau:
a) \({\log _6}9 + {\log _6}4\);
b) \({\log _5}2 - {\log _5}50\);
c) \({\log _3}\sqrt 5 - \frac{1}{2}{\log _3}15\).
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa và các tính chất của phép tính lôgarit.
Lời giải chi tiết
a) \({\log _6}9 + {\log _6}4 = {\log _6}\left( {9.4} \right) = {\log _6}36 = {\log _6}{6^2} = 2\).
b) \({\log _5}2 - {\log _5}50 = {\log _5}\frac{2}{{50}} = {\log _5}\frac{1}{{25}} = {\log _5}{5^{ - 2}} = - 2\)
c)\({\log _3}\sqrt 5 - \frac{1}{2}{\log _3}15 = \frac{1}{2}.{\log _3}5 - \frac{1}{2}.{\log _3}15 = \frac{1}{2}({\log _3}5 - {\log _3}15) = \frac{1}{2}{\log _3}\frac{5}{{15}} = \frac{1}{2}{\log _3}\frac{1}{3} = \frac{1}{2}{\log _3}{3^{ - 1}} = - \frac{1}{2}\)
- Bài 5 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 6 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 7 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 3 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 2 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo