Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
Bài 7. Phương trình quy về phương trình bậc hai
Trả lời câu hỏi 1 Bài 7 trang 55 Toán 9 Tập 2 >
Giải các phương trình trùng phương:
Video hướng dẫn giải
Giải các phương trình trùng phương:
LG a
\(4x^4 + x^2– 5 = 0\)
Phương pháp giải:
+ Đặt \({x^2} = {\rm{ }}t,{\rm{ }}t{\rm{ }} \ge {\rm{ }}0\).
+ Giải phương trình \(a{t^2} + {\rm{ }}bt{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\).
+ Với mỗi giá trị tìm được của t (thỏa mãn \( t \ge 0\)), lại giải phương trình \({x^2} = {\rm{ }}t\).
Lời giải chi tiết:
\(4x^4 + x^2– 5 = 0\)
Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\).
Phương trình trở thành \(4t^2 + t – 5 = 0\)
Nhận thấy đây là phương trình bậc hai ẩn \(t\) có \(a + b + c = 4+1-5=0\) nên phương trình có nghiệm
\(\displaystyle {t_1} = 1;\,\,{t_2} = {{ - 5} \over 4}\)
Do \(t \ge 0\) nên chỉ có \(t = 1\) thỏa mãn điều kiện
Với \(t = 1\), ta có: \({x^2} = 1 \Leftrightarrow x = \pm 1\)
Vậy phương trình đã cho có 2 nghiệm \(x_1 = 1; x_2 = -1\)
LG b
\(3x^4 + 4x^2 + 1 = 0.\)
Phương pháp giải:
+ Đặt \({x^2} = {\rm{ }}t,{\rm{ }}t{\rm{ }} \ge {\rm{ }}0\).
+ Giải phương trình \(a{t^2} + {\rm{ }}bt{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\).
+ Với mỗi giá trị tìm được của t (thỏa mãn \( t \ge 0\)), lại giải phương trình \({x^2} = {\rm{ }}t\).
Lời giải chi tiết:
\(3x^4 + 4x^2 + 1 = 0.\)
Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\).
Phương trình trở thành: \(3t^2 + 4t + 1 = 0\)
Nhận thấy đây là phương trình bậc hai ẩn \(t\) có \(a - b + c =3-4+1= 0\) nên phương trình có nghiệm
\(\displaystyle {t_1} = - 1;\,\,{t_2} = {{ - 1} \over 3}\)
Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện \(t \ge 0\)
Vậy phương trình đã cho vô nghiệm.
Loigiaihay.com
Các bài khác cùng chuyên mục





Danh sách bình luận