Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Hiệu của hai vectơ
Bài 20 trang 18 Sách giáo khoa (SGK) Hình học 10 Nâng cao>
Cho sáu điểm A, B, C, D, E, F. Chứng minh rằng
Đề bài
Cho sáu điểm \(A, B, C, D, E, F\). Chứng minh rằng
\(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} \)\(= \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \)\(= \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \).
Lời giải chi tiết
Theo quy tắc ba điểm, ta có
\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} \cr&= \left( {\overrightarrow {AE} + \overrightarrow {ED} } \right) + \left( {\overrightarrow {BF} + \overrightarrow {FE} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DF} } \right) \cr
&= \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FE} + \overrightarrow {ED} + \overrightarrow {DF} } \right) \cr
&= \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FD} + \overrightarrow {DF} } \right) \cr
& = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \cr} \)
Tương tự, ta cũng có
\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} \cr&= \left( {\overrightarrow {AF} + \overrightarrow {FD} } \right) + \left( {\overrightarrow {BD} + \overrightarrow {DE} } \right) + \left( {\overrightarrow {CE} + \overrightarrow {EF} } \right) \cr
& = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FD} + \overrightarrow {DE} + \overrightarrow {EF} } \right) \cr
& = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FE} + \overrightarrow {EF} } \right) \cr
& = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \cr} \)
Vậy ta có \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD}\)\( = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \)
Cách khác:

Loigiaihay.com
- Bài 19 trang 18 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Bài 18 trang 17 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Bài 17 trang 17 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Bài 16 trang 17 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Bài 15 trang 17 Sách giáo khoa (SGK) Hình học 10 Nâng cao
>> Xem thêm




