Bài 1 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo>
Cho hình chóp (S.ABCD), đáy (ABCD) là hình thoi cạnh (a) có (O) là giao điểm của hai đường chéo
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình thoi cạnh \(a\) có \(O\) là giao điểm của hai đường chéo, \(\widehat {ABC} = {60^ \circ },SO \bot \left( {ABCD} \right),SO = a\sqrt 3 \). Tính khoảng cách từ \(O\) đến mặt phẳng \(\left( {SCD} \right)\).
Phương pháp giải - Xem chi tiết
Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.
Lời giải chi tiết
Kẻ \(OI \bot C{\rm{D}}\left( {I \in C{\rm{D}}} \right),OH \bot SI\left( {H \in SI} \right)\).
Ta có:
\(\begin{array}{l}\left. \begin{array}{l}SO \bot \left( {ABCD} \right) \Rightarrow SO \bot C{\rm{D}}\\OI \bot C{\rm{D}}\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {SOI} \right)\\\left. \begin{array}{l} \Rightarrow C{\rm{D}} \bot OH\\OH \bot SI\end{array} \right\} \Rightarrow OH \bot \left( {SC{\rm{D}}} \right)\\ \Rightarrow d\left( {O,\left( {SC{\rm{D}}} \right)} \right) = OH\end{array}\)
\(\Delta ABC\) đều \( \Rightarrow AC = a \Rightarrow OC = \frac{1}{2}AC = \frac{a}{2}\)
\(\Delta ABD\) có \(\widehat {BA{\rm{D}}} = {120^ \circ } \Rightarrow B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2} - 2{\rm{A}}B.A{\rm{D}}} = a\sqrt 3 \Rightarrow OD = \frac{1}{2}B{\rm{D}} = \frac{{a\sqrt 3 }}{2}\)
\(\Delta OCD\) vuông tại \(O\) có đường cao \(OI\)
\( \Rightarrow OI = \frac{{OC.O{\rm{D}}}}{{C{\rm{D}}}} = \frac{{a\sqrt 3 }}{4}\)
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OI \Rightarrow \Delta SOI\) vuông tại \(O\) có đường cao \(OH\)
\( \Rightarrow OH = \frac{{SO.OI}}{{\sqrt {S{O^2} + O{I^2}} }} = \frac{{a\sqrt {51} }}{{17}}\)
Vậy \(d\left( {O,\left( {SCD} \right)} \right) = OH = \frac{{a\sqrt {51} }}{{17}}\).
- Bài 2 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 3 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 5 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 6 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo