Bài 9 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức>
Nếu (f(x) = {sin ^2}x + x{e^{2x}}) thì (f''(0)) bằng
Đề bài
Nếu \(f(x) = {\sin ^2}x + x{e^{2x}}\) thì \(f''(0)\) bằng
A. 4.
B. 5 .
C. 6 .
D. 0 .
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc kết hợp công thức để tính đạo hàm
Lời giải chi tiết
Ta có \(f'(x) = 2\sin x\cos x + {e^{2x}} + 2x{e^{2x}} = \sin 2x + {e^{2x}} + 2x{e^{2x}}\)
\( \Rightarrow f''\left( x \right) = 2\cos 2x + 2{e^{2x}} + 2\left( {{e^{2x}} + 2x{e^{2x}}} \right) = 2\cos 2x + 4{e^{2x}} + 4x{e^{2x}}\)
Do đó \(f''(0) = 6\)
Đáp án C
- Bài 10 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 11 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 12 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 13 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 14 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức