Bài 8 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo


Gieo 2 con xúc xắc cân đối và đồng chất.

Đề bài

Gieo 2 con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 6”.

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

Gọi \(A\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 6”.

\(\begin{array}{l}A = \left\{ {\left( {1;6} \right);\left( {2;6} \right);\left( {3;6} \right);\left( {4;6} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;2} \right);\left( {6;3} \right);\left( {6;4} \right);\left( {6;5} \right);\left( {6;6} \right);} \right.\\ & \left. {\left( {2;3} \right);\left( {3;2} \right);\left( {4;3} \right);\left( {3;4} \right)} \right\}\end{array}\)

\( \Rightarrow n\left( A \right) = 15 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}} = \frac{{15}}{{36}} = \frac{5}{{12}}\)


Bình chọn:
4.2 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí