

Bài 22 trang 23 Sách giáo khoa (SGK) Hình học 10 Nâng cao>
Cho tam giác OAB. Gọi M, N lần lượt là trung điểm hai cạnh OA và OB. Hãy tìm các số m thích hợp trong mỗi đẳng thức sau đây
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho tam giác \(OAB\). Gọi \(M, N\) lần lượt là trung điểm hai cạnh \(OA\) và \(OB\). Hãy tìm các số \(m\) và \(n\) thích hợp trong mỗi đẳng thức sau đây
\(\eqalign{
& \overrightarrow {OM} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\cr&\overrightarrow {MN} = m\overrightarrow {OA} + n\overrightarrow {OB} ; \cr
& \overrightarrow {AN} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\cr&\overrightarrow {MB} = m\overrightarrow {OA} + n\overrightarrow {OB} . \cr} \)
Lời giải chi tiết
Ta có
\(\eqalign{
& \overrightarrow {OM} = {1 \over 2}\overrightarrow {OA} = {1 \over 2}\overrightarrow {OA} + 0.\overrightarrow {OB} \cr&\Rightarrow \,m = {1 \over 2},\,n = 0. \cr
& \overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} \cr&= {1 \over 2}\overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} \cr&= \left( { - {1 \over 2}} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \cr& \Rightarrow \,m = - {1 \over 2},\,n = {1 \over 2}. \cr
& \overrightarrow {AN} = \overrightarrow {ON} - \overrightarrow {OA} \cr&= {1 \over 2}\overrightarrow {OB} - \overrightarrow {OA}\cr& = \left( { - 1} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB}\cr&\Rightarrow \,m = - 1,\,n = {1 \over 2}. \cr
& \overrightarrow {MB} = \overrightarrow {OB} - \overrightarrow {OM} \cr&= \overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} \cr& = \left( { - {1 \over 2}} \right)\overrightarrow {OA} + \overrightarrow {OB}\cr&\Rightarrow \,m = - {1 \over 2},\,n = 1. \cr} \)
Cách khác:
Loigiaihay.com

