Lý thuyết về căn bậc ba.>
Tải vềTừ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:
1. Định nghĩa
+ Căn bậc ba của một số a là số x sao cho \(x^3=a\)
+ Căn bậc ba của số a được kí hiệu là \(\root 3 \of a \)
Như vậy \({\left( {\root 3 \of a } \right)^3} = a\)
Mọi số thực đều có căn bậc ba.
2. Các tính chất
a) \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
b) \(\root 3 \of {ab} = \root 3 \of a .\root 3 \of b \)
c) Với b ≠ 0, ta có \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of a } \over {\root 3 \of b }}\)
3. Áp dụng
Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:
a) \(a\root 3 \of b = \root 3 \of {{a^3}b} \)
b) \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of {a{b^2}} } \over b}\)
c) Áp dụng hằng đẳng thức \(\left( {A \pm B} \right)\left( {{A^2} \mp AB + {B^2}} \right) = {A^3} \pm {B^3}\), ta có:
\(\eqalign{
& \left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right) \cr
& = {\left( {\root 3 \of a } \right)^3} \pm {\left( {\root 3 \of b } \right)^3} = a \pm b \cr} \)
Do đó
\(\eqalign{
& {M \over {\root 3 \of a \pm \root 3 \of b }} \cr
& = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {\left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)}} \cr
& = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {a \pm b}} \cr} \)
4. Các dạng toán cơ bản
Dạng 1: Tính giá trị biểu thức
Sử dụng: \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\)
Ví dụ: \(\sqrt[3]{{64}} = \sqrt[3]{{{4^3}}} = 4\)
Dạng 2: So sánh các căn bậc ba
Sử dụng: \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
Ví dụ: So sánh 3 và \(\sqrt[3]{{26}}\)
Ta có: \(3 = \sqrt[3]{{27}}\) mà \(26<27\) nên \(\sqrt[3]{{26}} < \sqrt[3]{{27}} \Leftrightarrow \sqrt[3]{{26}} < 3\)
Dạng 3: Giải phương trình chứa căn bậc ba
Sử dụng: \(\sqrt[3]{A} = B \Leftrightarrow A = {B^3}\)
Ví dụ:
\(\begin{array}{l}
\sqrt[3]{{x - 1}} = 2\\
\Leftrightarrow x - 1 = {2^3}\\
\Leftrightarrow x - 1 = 8\\
\Leftrightarrow x = 9
\end{array}\)
Loigiaihay.com


- Trả lời câu hỏi Bài 9 trang 35 SGK Toán 9 Tập 1
- Trả lời câu hỏi Bài 9 trang 36 SGK Toán 9 Tập 1
- Bài 67 trang 36 SGK Toán 9 tập 1
- Bài 68 trang 36 SGK Toán 9 tập 1
- Bài 69 trang 36 SGK Toán 9 tập 1
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết góc nội tiếp
- Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)
- Lý thuyết Hệ thức Vi-ét và ứng dụng.
- Lý thuyết về đường kính và dây của đường tròn
- Lý thuyết về tính chất của hai tiếp tuyến cắt nhau.
- Bài 27 trang 53 SGK Toán 9 tập 2
- Lý thuyết diện tích hình tròn, hình quạt tròn
- Lý thuyết độ dài đường tròn, cung tròn
- Lý thuyết về dấu hiệu nhận biết tiếp tuyến của đường tròn
- Lý thuyết Công thức nghiệm của phương trình bậc hai