Đề kiểm tra 15 phút - Đề số 4 - Bài 9 - Chương 1 - Đại số 9>
Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 9 - Chương 1 - Đại số 9
Đề bài
Bài 1. Chứng minh rằng : \(\left( {\root 3 \of 9 + \root 3 \of 6 + \root 3 \of 4 } \right)\left( {\root 3 \of 3 - \root 3 \of 2 } \right) = 1\)
Bài 2. Tìm x, biết : \(\root 3 \of {{x^3} + 8} = x + 2\)
Bài 3. So sánh: \(3\root 3 \of 3 \) và \(\root 3 \of {80} \)
Bài 4. Trục căn thức ở mẫu số : \({1 \over {1 - \root 3 \of 2 }}\)
LG bài 1
Phương pháp giải:
Sử dụng: \(\left( {\sqrt[3]{a} - \sqrt[3]{b}} \right)\left( {\sqrt[3]{{{a^2}}} + \sqrt[3]{a}.\sqrt[3]{b} + \sqrt[3]{{{b^2}}}} \right) = a - b\)
Lời giải chi tiết:
Biến đổi vế trái (VT), ta có:
\(\eqalign{ VT &= \left[ {{{\left( {\root 3 \of 3 } \right)}^2} + \root 3 \of 3 .\root 3 \of 2 + {{\left( {\root 3 \of 2 } \right)}^2}} \right].\left[ {\root 3 \of 3 - \root 3 \of 2 } \right] \cr & = {\left( {\root 3 \of 3 } \right)^3} - {\left( {\root 3 \of 2 } \right)^3} \cr&= 3 - 2 = 1 = VP\,\left( {đpcm} \right) \cr} \)
LG bài 2
Phương pháp giải:
Sử dụng \(\sqrt[3]{{f\left( x \right)}} = g(x) \Leftrightarrow f\left( x \right) = {(g(x))^3}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & \root 3 \of {{x^3} + 8} = x + 2 \cr&\Leftrightarrow {x^3} + 8 = {\left( {x + 2} \right)^3} \cr & \Leftrightarrow {x^3} + 8 = {x^3} + 6{x^2} + 12x + 8 \cr & \Leftrightarrow 6{x^2} + 12x = 0 \Leftrightarrow x\left( {x + 2} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{ {x = 0} \cr {x = - 2} \cr } } \right. \cr} \)
Vậy \(x=0;x=-2\)
LG bài 3
Phương pháp giải:
Sử dụng \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
Lời giải chi tiết:
Ta có:
\(3\sqrt[3]{3} = \sqrt[3]{{{3^3}.3}} = \sqrt[3]{{81}}\)
Mà:
\(\begin{array}{l}
81 > 80\\
\Leftrightarrow \sqrt[3]{{81}} > \sqrt[3]{{80}}\\
\Leftrightarrow 3\sqrt[3]{3} > \sqrt[3]{{80}}
\end{array}\)
LG bài 4
Phương pháp giải:
Sử dụng: \(\dfrac{1}{{m - \sqrt[3]{a}}} = \dfrac{{{m^2} + m\sqrt[3]{a} + \sqrt[3]{{{a^2}}}}}{{{m^3} - a}}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & {1 \over {1 - \root 3 \of 2 }} \cr&= {{1 + \root 3 \of 2 + \root 3 \of 4 } \over {\left( {1 - \root 3 \of 2 } \right)\left( {1 + \root 3 \of 2 + \root 3 \of 4 } \right)}} \cr & = {{1 + \root 3 \of 2 + \root 3 \of 4 } \over {1 - 2}} = - \left( {1 + \root 3 \of 2 + \root 3 \of 4 } \right) \cr} \)
Loigiaihay.com
- Đề kiểm tra 15 phút - Đề số 5 - Bài 9 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 3 - Bài 9 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 2 - Bài 9 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 1 - Bài 9 - Chương 1 - Đại số 9
- Bài 69 trang 36 SGK Toán 9 tập 1
>> Xem thêm
Các bài khác cùng chuyên mục