Bài 3 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Cho hai hình vuông \(ABCD\) và \(ABEF\) ở trong hai mặt phẳng khác nhau. Trên các đường chéo \(AC\) và \(BF\) lần lượt lấy các điểm \(M,N\) sao cho \(AM = BN\). Các đường thẳng song song với \(AB\) vẽ từ \(M,N\) lần lượt cắt \(AD,AF\) tại \(M',N'\).
Đề bài
Cho hai hình vuông \(ABCD\) và \(ABEF\) ở trong hai mặt phẳng khác nhau. Trên các đường chéo \(AC\) và \(BF\) lần lượt lấy các điểm \(M,N\) sao cho \(AM = BN\). Các đường thẳng song song với \(AB\) vẽ từ \(M,N\) lần lượt cắt \(AD,AF\) tại \(M',N'\).
a) Chứng minh \(\left( {CBE} \right)\parallel \left( {ADF} \right)\).
b) Chứng minh \(\left( {DEF} \right)\parallel \left( {MNN'M'} \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng định lí Thalès trong tam giác.
‒ Sử dụng định lí 1: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,b\) cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song với \(\left( Q \right)\).
Lời giải chi tiết
a) \(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD\parallel BC\)
Mà \(A{\rm{D}} \subset \left( {ADF} \right)\)
\( \Rightarrow BC\parallel \left( {A{\rm{D}}F} \right)\)
\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AF\parallel BE\)
Mà \(A{\rm{F}} \subset \left( {ADF} \right)\)
\( \Rightarrow BE\parallel \left( {A{\rm{D}}F} \right)\)
Ta có:
\(\left. \begin{array}{l}BC\parallel \left( {A{\rm{D}}F} \right)\\BE\parallel \left( {A{\rm{D}}F} \right)\\BC,BE \subset \left( {CBE} \right)\end{array} \right\} \Rightarrow \left( {CBE} \right)\parallel \left( {A{\rm{D}}F} \right)\)
b) Do \(ABCD\) và \(ABEF\) là hai hình vuông có chung cạnh \(AB\) nên các đường chéo \(AC,BF\) bằng nhau.
Theo đề bài ta có: \(AM = BN\)
\( \Rightarrow \)\(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}}\)
Ta có:
\(MM'\parallel C{\rm{D}} \Rightarrow \frac{{AM}}{{AC}} = \frac{{AM'}}{{A{\rm{D}}}}\)
\(NN'\parallel AB \Rightarrow \frac{{BN}}{{BF}} = \frac{{AN'}}{{AF}}\)
\(\left. \begin{array}{l} \Rightarrow \frac{{AM'}}{{A{\rm{D}}}} = \frac{{AN'}}{{AF}} \Rightarrow M'N'\parallel DF\\M'N' \subset \left( {MNN'M'} \right)\end{array} \right\} \Rightarrow DF\parallel \left( {MNN'M'} \right)\)
\(\left. \begin{array}{l}NN'\parallel EF\\{\rm{NN}}' \subset \left( {MNN'M'} \right)\end{array} \right\} \Rightarrow EF\parallel \left( {MNN'M'} \right)\)
\(\left. \begin{array}{l}DF\parallel \left( {MNN'M'} \right)\\EF\parallel \left( {MNN'M'} \right)\\C{\rm{D}},DF \subset \left( {DEF} \right)\end{array} \right\} \Rightarrow \left( {DEF} \right)\parallel \left( {MNN'M'} \right)\)
- Bài 4 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 2 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo