Lý thuyết Giải bài toán bằng cách lập hệ phương trình.>
Để giải bài toán bằng cách lập hệ hai phương trình bậc nhất hai ẩn ta làm theo ba bước sau:
1. Các kiến thức cần nhớ
Các bước giải bài toán bằng cách lập hệ phương trình
Bước 1. Lập hệ phương trình:
- Chọn các ẩn số và đặt điều kiện thích hợp cho các ẩn số;
- Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết;
-Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2. Giải hệ phương trình vừa thu được.
Bước 3. Kết luận
- Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn.
- Kết luận bài toán.
2. Các dạng toán thường gặp
Dạng 1: Toán liên quan đến mối quan hệ giữa các số
Phương pháp:
Ta thường sử dụng các kiến thức sau:
+) Biểu diễn số có hai chữ số : $\overline {ab} = 10a + b$ trong đó
$a$ là chữ số hàng chục và $0 < a \le 9$, $a \in \mathbb{N}$,
$b$ là chữ số hàng đơn vị và $0 \le b \le 9,b \in \mathbb{N}$.
+) Biểu diễn số có ba chữ số: $\overline {abc} = 100a + 10b + c$ trong đó
$a$ là chữ số hàng trăm và $0 < a \le 9$, $a \in \mathbb{N}$,
$b$ là chữ số hàng chục và $0 \le b \le 9,b \in \mathbb{N}$,
$c$ là chữ số hàng đơn vị và $0 \le c \le 9,c \in \mathbb{N}$.
Dạng 2: Toán chuyển động
Phương pháp:
Ta thường sử dụng các công thức $S = v.t$, $v = \dfrac{S}{t},t = \dfrac{S}{v}$
Với $S:$ là quãng đường, $v:$ là vận tốc, $t$: thời gian
Dạng 3: Toán làm chung công việc
Phương pháp:
Một số lưu ý khi giải bài toán làm chung công việc
- Có ba đại lượng tham gia là: Toàn bộ công việc , phần công việc làm được trong một đơn vị thời gian (năng suất) và thời gian.
- Nếu một đội làm xong công việc trong $x$ ngày thì một ngày đội dó làm được $\dfrac{1}{x}$ công việc.
- Xem toàn bộ công việc là $1$ (công việc).
Dạng 4: Toán phần trăm
Phương pháp:
- Nếu gọi tổng số sản phẩm là $x$ thì số sản phẩm khi vượt mức $a\% $ là $(100 + a)\% .x$ (sản phẩm)
- Nếu gọi tổng số sản phẩm là $x$ thì số sản phẩm khi giảm $a\% $ là $(100 - a)\% .x$ (sản phẩm).
Dạng 5: Toán có nội dung hình học
Phương pháp:
Một số công thức cần nhớ
Với tam giác:
Diện tích = (Đường cao x Cạnh đáy) $:2$
Chu vi = Tổng độ dài ba cạnh
Với tam giác vuông: Diện tích = Tích hai cạnh góc vuông$:2$
Với hình chữ nhật:
Diện tích = Chiều dài. Chiều rộng
Chu vi=(Chiều dài + chiều rộng) $.2$
Với hình vuông cạnh $a$
Diện tích = ${a^2}$
Chu vi = Cạnh . $4$
- Trả lời câu hỏi Bài 5 trang 20 Toán 9 Tập 2
- Trả lời câu hỏi 3 Bài 5 trang 21 SGK toán 9 tập 2
- Trả lời câu hỏi Bài 5 trang 21 Toán 9 Tập 2
- Trả lời câu hỏi 4 Bài 5 trang 21 SGK toán 9 tập 2
- Trả lời câu hỏi 5 Bài 5 trang 21 SGK toán 9 tập 2
>> Xem thêm
Các bài khác cùng chuyên mục