Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 2 - Hình học 9

Đề bài

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Đường thẳng OO’ cắt (O) và (O’) lần lượt tại B và C (khác A). Gọi DE là tiếp tuyến chung ngoài của (O) và (O’). Trong đó, \(D ∈ (O), E ∈ (O’)\). Gọi H là giao điểm của hai đường thẳng BD và CE. Chứng minh rằng :

a. \(\widehat {DHE} = 90^\circ \)

b. HA là tiếp tuyến chung của hai đường tròn (O) và (O’).

Phương pháp giải - Xem chi tiết

a. Ta chứng minh tổng hai góc B và C bằng 90 độ từ đó suy ra DHE bằng 90 độ

b.Chứng minh HDAE là hình chữ nhật suy ra tam giác ODI bằng tam giác OAI

=>IA vuông góc với BC

Lời giải chi tiết

a. DE là tiếp tuyến chung ngoài của (O) và (O’) nên \(DE ⊥ OD\).

và \(DE ⊥ O’E ⇒ OD // O’E.\)

Do đó: \(\widehat {DOO'} + \widehat {EO'O} = 180^\circ \) (cặp góc trong cùng phía)

\( \Rightarrow \widehat {DOB} + \widehat {EO'C} = 180^\circ \)

Các tam giác BOD và CO’E cân tại O và O’ nên:

\(2\widehat B + 2\widehat C = 180^\circ \)

\(\Rightarrow 2\left( {\widehat B + \widehat C} \right) = 180^\circ  \Rightarrow \widehat B + \widehat C = 90^\circ \)

Trong tam giác BHC ta có \(\widehat {BHC} = 90^\circ \,\,hay\,\,\widehat {DHE} = 90^\circ .\)

b. Dễ thấy tứ giác HDAE là hình chữ nhật (có ba góc vuông).

Gọi I là giao điểm hai đường chéo AH và DE, ta có \(ID = IA\) ( tính chất hai đường chéo hình chữ nhật).

Các tam giác ODI và OAI có : OI chung, \(DI = AI\) (cmt), \(OD = OA (=R)\)

Vậy \(∆ODI = ∆OAI\) (c.c.c)

\( \Rightarrow \widehat {OAI} = \widehat {ODI} = 90^\circ \) hay \(IA ⊥ BC\) tại A

\(⇒ HA\) là tiếp tuyến chung của (O) và (O’)

Loigiaihay.com


Bình chọn:
4 trên 3 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí