Đề kiểm tra 15 phút - Đề số 3 - Bài 9 - Chương 3 - Hình học 9>
Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 9 - Chương 3 - Hình học 9
Đề bài
Cho ba điểm A, B, C liên tiếp trên một đường thẳng. Chứng minh rằng độ dài của nửa đường tròn đường kính AC bằng tổng các độ dài của hai nửa đường tròn có đường kính AB và BC.
Phương pháp giải - Xem chi tiết
Gọi C1 là độ dài đường tròn đường kính AC, C2, C3 lần lượt là độ dài các đường tròn đường kính AB và BC.
Chứng minh \( \dfrac{{{C_1}} }{ 2} =\dfrac {{{C_2} + {C_3}}}{ 2}\)
Lời giải chi tiết
Gọi C1 là độ dài đường tròn đường kính AC, C2, C3 lần lượt là độ dài các đường tròn đường kính AB và BC.
Ta có : \(C_1= π.AC\);
\(C_2= π.AB\);
\(C_3= π.BC\).
Vì B nằm giữa A và C nên \(AC = AB + BC\)
Vậy \({C_2} + {C_3} = \pi AB + \pi BC \)\(\,= \pi \left( {AB + BC} \right) = \pi AC\)
\( \Rightarrow \dfrac{{{C_1}} }{ 2} =\dfrac {{{C_2} + {C_3}}}{ 2}\)
Nghĩa là độ dài của nửa đường tròn đường kính AC bằng tổng các độ dài của hai nửa đường tròn đường kính AB và BC.
Loigiaihay.com
- Đề kiểm tra 15 phút - Đề số 4 - Bài 9 - Chương 3 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 5 - Bài 9 - Chương 3 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 2 - Bài 9 - Chương 3 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 1 - Bài 9 - Chương 3 - Hình học 9
- Bài 76 trang 96 SGK Toán 9 tập 2
>> Xem thêm
Các bài khác cùng chuyên mục