Bài 84 trang 99 SGK Toán 9 tập 2


a) Vẽ lại hình tạo bởi các cung tròn

Đề bài

a) Vẽ lại hình tạo bởi các cung tròn xuất phát từ đỉnh \(C\) của tam giác đều \(ABC\) cạnh \(1 cm\). Nêu cách vẽ (h.63).

b) Tính diện tích miền gạch sọc.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng compa và thước thẳng để vẽ hình.

+) Áp dụng công thức tính diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \dfrac{{\pi {R^2}n}}{{360}}.\)

+) Áp dụng diện tích hình tròn bán kính \(R\) là \(S= \pi R^2\) 

Lời giải chi tiết

a) Vẽ tam giác đều \(ABC\) cạnh \(1cm\)

Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(A\), bán kính \(1cm\), ta được cung \(\overparen{CD}\)

Vẽ cung \(\overparen{DE}\) của đường tròn tâm \(B\), bán kính \(2cm\) sao cho \(\widehat {DBE} =120^0\)

Vẽ cung \(\overparen{EF}\) của đường tròn tâm \(C\), bán kính \(3cm\) sao cho \(\widehat {ECF} =120^0\)

b) Diện tích hình quạt \(CAD\) là \(\dfrac{1}{3}\) \(π.1^2\)

Diện tích hình quạt \(DBE\) là \(\dfrac{1}{3}\) \(π.2^2\) 

Diện tích hình quạt \(ECF\) là \(\dfrac{1}{3}\) \(π.3^2\)

Diện tích phần gạch sọc là  \(\dfrac{1}{3}.π.1^2+ \dfrac{1}{3}.π.2^2 +\dfrac{1}{3}.π.3^2\)

\(=\dfrac{1}{3}\) \(π (1^2 + 2^2 + 3^2) = \dfrac{14}{3}π\) (\(cm^2\))


Bình chọn:
4.1 trên 47 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí