Bài 28 trang 116 SGK Toán 9 tập 1>
Cho góc xAy khác góc bẹt. Tâm của các đường tròn tiếp xúc với hai cạnh của góc xAy nằm trên đường nào?
Đề bài
Cho góc \(xAy\) khác góc bẹt. Tâm của các đường tròn tiếp xúc với hai cạnh của góc \(xAy\) nằm trên đường nào?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của hai tiếp tuyến cắt nhau: Cho \((O;R)\) với hai tiếp tuyến \(AB,\ AC\). Khi đó: \(AO\) là phân giác của góc \(BAC\)
Lời giải chi tiết
Gọi \(O\) là tâm của một đường tròn bất kì tiếp xúc với hai cạnh góc \(xAy\). Khi đó \(Ax,\ Ay\) là hai tiếp tuyến của đường tròn \((O)\). Theo tính chất của hai tiếp tuyến cắt nhau ta có:
\(\widehat {xAO} = \widehat {y{\rm{A}}O}\)
Hay \(AO\) là tia phân giác của góc \(xAy\). Vậy tập hợp tâm các đường tròn tiếp xúc với hai cạnh của góc \(xAy\) nằm trên tia phân giác của góc \(\widehat{xAy}\).
Loigiaihay.com
- Bài 29 trang 116 SGK Toán 9 tập 1
- Bài 30 trang 116 SGK Toán 9 tập 1
- Bài 31 trang 116 SGK Toán 9 tập 1
- Bài 32 trang 116 SGK Toán 9 tập 1
- Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 2 - Hình học 9
>> Xem thêm
Các bài khác cùng chuyên mục