Trắc nghiệm Bài 23: Phép cộng và phép trừ phân thức đại số Toán 8 Kết nối tri thức
Đề bài
Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:
-
A.
\(\frac{{A.C}}{B}\)
-
B.
\(\frac{{A + C}}{B}\)
-
C.
\(\frac{{A + C}}{{2B}}\)
-
D.
\(\frac{{A + C}}{{{B^2}}}\)
Chọn khẳng định đúng?
-
A.
\(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{B - D}}\)
-
B.
\(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BC}}\)
-
C.
\(\frac{A}{B} - \frac{C}{D} = \frac{{AD - BC}}{{BD}}\)
-
D.
\(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{BD}}\)
Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:
-
A.
\(\frac{{2x + 1}}{{x + 1}}\)
-
B.
\(\frac{{1 - 2x}}{{x + 1}}\)
-
C.
\(\frac{{x + 1}}{{2x - 1}}\)
-
D.
\(\frac{{x + 1}}{{1 - 2x}}\)
Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne - 2} \right)\)
-
A.
\(x + 2\)
-
B.
\(2x\)
-
C.
\(x\)
-
D.
\(x - 2\)
Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)
-
A.
\(\frac{{ - 3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
-
B.
\(\frac{{3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
-
C.
\(\frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
-
D.
\(\frac{{3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?
-
A.
\(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}}\)
-
B.
\(\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}}\)
-
C.
\(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
-
D.
\(\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}}\)
Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:
-
A.
\(\frac{{ - 2}}{{x - 3}}\)
-
B.
\(\frac{{2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
-
C.
\(\frac{2}{{x + 3}}\)
-
D.
\(\frac{2}{{x - 3}}\)
Chọn câu đúng?
-
A.
\(\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{{x - y}}{{x + y}}\)
-
B.
\(\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\)
-
C.
\(\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3x + 4}}{{18}}\)
-
D.
\(\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{{3x + 5}}{{{x^2} - 1}}\)
Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)
-
A.
\(A = \frac{{ - 6{x^2} + 2x - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
-
B.
\(A = \frac{{6{x^2}}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
-
C.
\(A = \frac{{6{x^2} + 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
-
D.
\(A = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:
-
A.
\(A = \frac{{11}}{2}\)
-
B.
\(A = \frac{{13}}{2}\)
-
C.
\(A = \frac{{15}}{2}\)
-
D.
\(A = \frac{{17}}{2}\)
Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)
-
A.
\(B = \frac{1}{{2020}}\)
-
B.
\(B = \frac{1}{{202000}}\)
-
C.
\(B = \frac{1}{{200200}}\)
-
D.
\(B = \frac{1}{{20200}}\)
Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne \pm 3} \right)\)
-
A.
\(x = 0\)
-
B.
\(x = \frac{1}{2}\)
-
C.
\(x = 1\)
-
D.
\(x = \frac{3}{2}\)
Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)
-
A.
\(A = 1\)
-
B.
\(A = 0\)
-
C.
\(A = \frac{1}{2}\)
-
D.
\(A = \frac{{99}}{{100}}\)
Cho \(x;\,y;\,z\, \ne \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?
-
A.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
-
B.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{3xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
-
C.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
-
D.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz\left( {x + y + z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)
-
A.
\(A = 30;\,B = 15;\,C = - 2\)
-
B.
\(A = 39;\,B = - 15;\,C = 2\)
-
C.
\(A = 49;\,B = - 14;\,C = 2\)
-
D.
\(A = 39;\,B = - 14;\,C = - 2\)
Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x = - \frac{3}{4}\)?
-
A.
\(0 < A < 1\)
-
B.
\(A = 0\)
-
C.
\(A = 1\)
-
D.
\(A = \frac{7}{4}\)
Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:
-
A.
\(A = - 1\)
-
B.
\(A = 0\)
-
C.
\(A = 1\)
-
D.
\(A = 2\)
Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.
-
A.
\(x = 0\)
-
B.
\(x = 1\)
-
C.
\(x = \pm 1\)
-
D.
\(x \in \left\{ {0;2} \right\}\)
Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Rút gọn biểu thức \(A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x}\) biết \(x > \frac{1}{2};\,x \ne 1\):
-
A.
\(\frac{1}{{2x\left( {x - 1} \right)}}\)
-
B.
\(\frac{1}{{2x\left( {x + 1} \right)}}\)
-
C.
\(\frac{2}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
-
D.
\(\frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)
-
A.
0
-
B.
1
-
C.
2
-
D.
-1
Cho \(\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{...}}{{1 - {x^{16}}}}\). Số thích hợp điền vào chỗ trống là?
-
A.
16
-
B.
8
-
C.
4
-
D.
20
Cho \(a,\,b,\,c\)thỏa mãn \(abc = 2023\). Tính giá trị biểu thức sau: \(A = \frac{{2023{\rm{a}}}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\).
-
A.
\(A = - 1\)
-
B.
\(A = 0\)
-
C.
\(A = 1\)
-
D.
\(A = 2\)
Cho \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) và \(x + y + z \ne 0\). Tính giá trị của biểu thức \(A = \frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}\).
-
A.
0
-
B.
1
-
C.
2
-
D.
3
Cho ba số thực \(a,\,b,\,c\) đôi một phân biệt. Khẳng định nào sau đây là đúng?
-
A.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \le 0\)
-
B.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)
-
C.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \ge 2\)
-
D.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} > 4\)
Lời giải và đáp án
Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:
-
A.
\(\frac{{A.C}}{B}\)
-
B.
\(\frac{{A + C}}{B}\)
-
C.
\(\frac{{A + C}}{{2B}}\)
-
D.
\(\frac{{A + C}}{{{B^2}}}\)
Đáp án : B
Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.
\(\frac{A}{B} + \frac{C}{B} = \frac{{A + C}}{B}\)
Chọn khẳng định đúng?
-
A.
\(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{B - D}}\)
-
B.
\(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BC}}\)
-
C.
\(\frac{A}{B} - \frac{C}{D} = \frac{{AD - BC}}{{BD}}\)
-
D.
\(\frac{A}{B} - \frac{C}{D} = \frac{{A - C}}{{BD}}\)
Đáp án : C
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
Quy đồng mẫu thức \(\frac{A}{B}\) và \(\frac{C}{D}\):
\(\frac{A}{B} = \frac{{AD}}{{BD}};\,\frac{C}{D} = \frac{{BC}}{{BD}}\)
Do đó \(\frac{A}{B} - \frac{C}{D} = \frac{{AD}}{{BD}} - \frac{{BC}}{{BD}} = \frac{{AD - BC}}{{BD}}\)
Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:
-
A.
\(\frac{{2x + 1}}{{x + 1}}\)
-
B.
\(\frac{{1 - 2x}}{{x + 1}}\)
-
C.
\(\frac{{x + 1}}{{2x - 1}}\)
-
D.
\(\frac{{x + 1}}{{1 - 2x}}\)
Đáp án : B
Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng 0.
Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là \( - \frac{{2x - 1}}{{x + 1}} = \frac{{1 - 2x}}{{x + 1}}\).
Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne - 2} \right)\)
-
A.
\(x + 2\)
-
B.
\(2x\)
-
C.
\(x\)
-
D.
\(x - 2\)
Đáp án : D
Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.
\(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}} = \frac{{{x^2} - 4}}{{x + 2}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right):\left( {x + 2} \right)}}{{\left( {x + 2} \right):\left( {x + 2} \right)}} = \frac{{x - 2}}{1} = x - 2\)
Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)
-
A.
\(\frac{{ - 3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
-
B.
\(\frac{{3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
-
C.
\(\frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
-
D.
\(\frac{{3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
Đáp án : C
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\\ \Rightarrow A = \frac{{x + 2}}{{3x + 5}} - \frac{{x - 1}}{2} = \frac{{\left( {x + 2} \right)2}}{{2\left( {3x + 5} \right)}} - \frac{{\left( {x - 1} \right)\left( {3x + 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{2x + 4}}{{2\left( {3x + 5} \right)}} - \frac{{3{x^2} - 3x + 5x - 5}}{{2\left( {3x + 5} \right)}} = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} - 3x + 5x - 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} + 2x - 5} \right)}}{{2\left( {3x + 5} \right)}} = \frac{{2x + 4 - 3{x^2} - 2x + 5}}{{2\left( {3x + 5} \right)}} = \frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\end{array}\)
Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?
-
A.
\(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}}\)
-
B.
\(\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}}\)
-
C.
\(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
-
D.
\(\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}}\)
Đáp án : C
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
A.
\(\begin{array}{l}\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} - 2x + 1 - {x^2} - 2x - 1}}{{{x^2} - 1}} = \frac{{ - 4x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
B.
\(\begin{array}{l}\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}} = \frac{{\left( {2x - 1} \right)\left( {x - 1} \right) - \left( {2x + 1} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} - x - 2x + 1} \right) - \left( {2{x^2} + x + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} - 3x + 1} \right) - \left( {2{x^2} + 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} - 3x + 1 - 2{x^2} - 3x - 1}}{{{x^2} - 1}} = \frac{{ - 6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
C.
\(\begin{array}{l}\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1}}{{{x^2} - 1}} = \frac{{4x}}{{{x^2} - 1}}\end{array}\)
D.
\(\begin{array}{l}\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}} = \frac{{\left( {2x + 1} \right)\left( {x + 1} \right) - \left( {2x - 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} + x + 2x + 1} \right) - \left( {2{x^2} - x - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} + 3x + 1} \right) - \left( {2{x^2} - 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} + 3x + 1 - 2{x^2} + 3x - 1}}{{{x^2} - 1}} = \frac{{6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
Vậy phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:
-
A.
\(\frac{{ - 2}}{{x - 3}}\)
-
B.
\(\frac{{2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
-
C.
\(\frac{2}{{x + 3}}\)
-
D.
\(\frac{2}{{x - 3}}\)
Đáp án : D
Thay phép trừ bằng phép cộng với phân thức đối.
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}} = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{2}{{x + 3}} + \frac{{ - 3}}{{x - 3}}\\ = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{2\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} + \frac{{ - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{3x + 21 + 2\left( {x - 3} \right) - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{3x + 21 + 2x - 6 - 3x - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{2x + 6}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{2}{{x - 3}}\end{array}\)
Chọn câu đúng?
-
A.
\(\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{{x - y}}{{x + y}}\)
-
B.
\(\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\)
-
C.
\(\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3x + 4}}{{18}}\)
-
D.
\(\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{{3x + 5}}{{{x^2} - 1}}\)
Đáp án : B
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
A.
\(\begin{array}{l}\frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{{x^2} - {y^2}}} = \frac{x}{{x - y}} + \frac{y}{{x + y}} + \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{x\left( {x + y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{{x^2} + xy + xy - {y^2} + 2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + 2xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{{\left( {x + y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{x + y}}{{x - y}} \ne \frac{{x - y}}{{x + y}}\end{array}\)
B.
\(\begin{array}{l}\frac{1}{{2x + 1}} - \frac{1}{{3x + 2}} = \frac{{3x + 2}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} - \frac{{2x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\\ = \frac{{\left( {3x + 2} \right) - \left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} = \frac{{3x + 2 - 2x - 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}} = \frac{{x + 1}}{{\left( {2x + 1} \right)\left( {3x + 2} \right)}}\end{array}\)
C.
\(\begin{array}{l}\frac{{2x + 3}}{6} + \frac{{x + 1}}{9} = \frac{{3\left( {2x + 3} \right)}}{{18}} + \frac{{2\left( {x + 1} \right)}}{{18}} = \frac{{6x + 9}}{{18}} + \frac{{2x + 2}}{{18}}\\ = \frac{{6x + 9 + 2x + 2}}{{18}} = \frac{{8x + 11}}{{18}} \ne \frac{{3x + 4}}{{18}}\end{array}\)
D.
\(\begin{array}{l}\frac{3}{{x - 1}} + \frac{{2x}}{{{x^2} - 1}} = \frac{3}{{x - 1}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{3\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{3x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{3x + 3 + 2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{5x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \ne \frac{{3x + 5}}{{{x^2} - 1}}\end{array}\)
Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)
-
A.
\(A = \frac{{ - 6{x^2} + 2x - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
-
B.
\(A = \frac{{6{x^2}}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
-
C.
\(A = \frac{{6{x^2} + 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
-
D.
\(A = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
Đáp án : D
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}} = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \left( {\frac{{x - 5}}{{{x^2} + x + 1}} + \frac{7}{{x - 1}}} \right)\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{\left( {x - 5} \right)\left( {x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{{x^2} - 5x - x + 5}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7{x^2} + 7x + 7}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} - 5x - x + 5 + 7{x^2} + 7x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{8{x^2} + x + 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{\left( {2{x^2} + x - 3} \right) - \left( {8{x^2} + x + 12} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{2{x^2} + x - 3 - 8{x^2} - x - 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\end{array}\)
Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:
-
A.
\(A = \frac{{11}}{2}\)
-
B.
\(A = \frac{{13}}{2}\)
-
C.
\(A = \frac{{15}}{2}\)
-
D.
\(A = \frac{{17}}{2}\)
Đáp án : D
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}} = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{5.2\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4x\left( {2x - 3} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{20x - 10}}{{4x\left( {2x - 1} \right)}} + \frac{{8{x^2} - 12x}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{20x - 10 + 8{x^2} - 12x + 4{x^2} + 3}}{{4x\left( {2x - 1} \right)}} = \frac{{12{x^2} + 8x - 7}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{12{x^2} - 6x + 14x - 7}}{{4x\left( {2x - 1} \right)}} = \frac{{6x\left( {2x - 1} \right) + 7\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}}\\ = \frac{{\left( {6x + 7} \right)\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} = \frac{{6x + 7}}{{4x}}\end{array}\)
Với \(x = \frac{1}{4}\) ta có: \(A = \frac{{6 \cdot \frac{1}{4} + 7}}{{4 \cdot \frac{1}{4}}} = \frac{{\frac{3}{2} + 7}}{1} = \frac{3}{2} + 7 = \frac{3}{2} + \frac{{14}}{2} = \frac{{17}}{2}\)
Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)
-
A.
\(B = \frac{1}{{2020}}\)
-
B.
\(B = \frac{1}{{202000}}\)
-
C.
\(B = \frac{1}{{200200}}\)
-
D.
\(B = \frac{1}{{20200}}\)
Đáp án : B
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}} = \frac{{x - 3}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} - \frac{{x - 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\\ = \frac{{\left( {x - 3} \right) - \left( {x - 23} \right)}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{x - 3 - x + 23}}{{\left( {x - 23} \right)\left( {x - 3} \right)}} = \frac{{20}}{{\left( {x - 23} \right)\left( {x - 3} \right)}}\end{array}\)
Với \(x = 2023\), ta có: \(B = \frac{{20}}{{\left( {2023 - 23} \right)\left( {2023 - 3} \right)}} = \frac{{20}}{{2000.2020}} = \frac{{20}}{{20.100.2020}} = \frac{1}{{100.2020}} = \frac{1}{{202000}}\)
Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne \pm 3} \right)\)
-
A.
\(x = 0\)
-
B.
\(x = \frac{1}{2}\)
-
C.
\(x = 1\)
-
D.
\(x = \frac{3}{2}\)
Đáp án : D
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = \frac{2}{{x + 3}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{2\left( {x - 3} \right) + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 6 + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\end{array}\)
\(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0 \Leftrightarrow \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = 0 \Leftrightarrow 2x - 3 = 0 \Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2}\)
Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)
-
A.
\(A = 1\)
-
B.
\(A = 0\)
-
C.
\(A = \frac{1}{2}\)
-
D.
\(A = \frac{{99}}{{100}}\)
Đáp án : D
Sử dụng công thức \(\frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}\)
\(\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\\ = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + ... + \left( {\frac{1}{{99}} - \frac{1}{{100}}} \right)\\ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{99}} - \frac{1}{{100}}\\ = 1 - \frac{1}{{100}} = \frac{{99}}{{100}}\end{array}\)
Cho \(x;\,y;\,z\, \ne \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?
-
A.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
-
B.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{3xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
-
C.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
-
D.
\(\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}} = \frac{{xyz\left( {x + y + z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\)
Đáp án : C
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}\frac{x}{{1 - {x^2}}} + \frac{y}{{1 - {y^2}}} + \frac{z}{{1 - {z^2}}}\\ = \frac{{x\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right) + y\left( {1 - {x^2}} \right)\left( {1 - {z^2}} \right) + z\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x\left( {1 - {y^2} - {z^2} + {y^2}{z^2}} \right) + y\left( {1 - {x^2} - {z^2} + {x^2}{z^2}} \right) + z\left( {1 - {x^2} - {y^2} + {x^2}{y^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x - x{y^2} - x{z^2} + x{y^2}{z^2} + y - {x^2}y - y{z^2} + {x^2}y{z^2} + z - {x^2}z - {y^2}z + {x^2}{y^2}z}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{\left( {x - {x^2}y - {x^2}z} \right) + \left( {y - x{y^2} - {y^2}z} \right) + \left( {z - x{{\rm{z}}^2} - y{z^2}} \right) + \left( {x{y^2}{z^2} + {x^2}y{z^2} + {x^2}{y^2}z} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x\left( {1 - xy - x{\rm{z}}} \right) + y\left( {1 - xy - yz} \right) + z\left( {1 - x{\rm{z}} - yz} \right) + xyz\left( {yz + x{\rm{z}} + xy} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{x.yz + y.x{\rm{z}} + z.xy + xyz.1}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\\ = \frac{{4xyz}}{{\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)\left( {1 - {z^2}} \right)}}\end{array}\)
Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)
-
A.
\(A = 30;\,B = 15;\,C = - 2\)
-
B.
\(A = 39;\,B = - 15;\,C = 2\)
-
C.
\(A = 49;\,B = - 14;\,C = 2\)
-
D.
\(A = 39;\,B = - 14;\,C = - 2\)
Đáp án : B
Tính tổng \(\frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{{{\left( {x + 3} \right)}^3}}}\) sau đó đồng nhất hệ số.
\(\begin{array}{l}\frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{{{\left( {x + 3} \right)}^3}}} = \frac{{A + B\left( {x + 3} \right) + C{{\left( {x + 3} \right)}^2}}}{{{{\left( {x + 3} \right)}^3}}}\\ = \frac{{A + B\left( {x + 3} \right) + C\left( {{x^2} + 6x + 9} \right)}}{{{{\left( {x + 3} \right)}^3}}} = \frac{{A + Bx + 3B + C{x^2} + 6Cx + 9C}}{{{{\left( {x + 3} \right)}^3}}}\\ = \frac{{C{x^2} + \left( {B + 6C} \right)x + \left( {A + 3B + 9C} \right)}}{{{{\left( {x + 3} \right)}^3}}}\end{array}\)
\(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}} \Leftrightarrow \left\{ \begin{array}{l}C = 2\\B + 6C = - 3\\A + 3B + 9C = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}A = 39\\B = - 15\\C = 2\end{array} \right.\)
Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Đáp án : D
Từ điều kiện \(3y - x = 6\) thế \(x = 3y - 6\) vào biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\) sau đó rút gọn biểu thức \(A\).
\(3y - x = 6 \Rightarrow x = 3y - 6\)
Thay \(x = 3y - 6\) vào \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\) ta được:
\(A = \frac{{3y - 6}}{{y - 2}} + \frac{{2\left( {3y - 6} \right) - 3y}}{{3y - 6 - 6}} = \frac{{3\left( {y - 2} \right)}}{{y - 2}} + \frac{{6y - 12 - 3y}}{{3y - 12}} = 3 + \frac{{3y - 12}}{{3y - 12}} = 3 + 1 = 4\)
Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x = - \frac{3}{4}\)?
-
A.
\(0 < A < 1\)
-
B.
\(A = 0\)
-
C.
\(A = 1\)
-
D.
\(A = \frac{7}{4}\)
Đáp án : A
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
Thay phép trừ bằng phép cộng với phân thức đối.
\(\begin{array}{l}A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} + \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12\left( {x + 2} \right) + \left( {3 - x} \right)}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \left[ {\frac{{12x + 24 + 3 - x}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\\ = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}\\ = \frac{{10\left( {x + 3} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\\ = \frac{{10\left( {x + 3} \right) - \left( {11x + 27} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{{10x + 30 - 11x - 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\\ = \frac{{ - x + 3}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\end{array}\)
Tại \(x = - \frac{3}{4}\) ta có \(A = \frac{1}{{\left( {\frac{{ - 3}}{4} + 2} \right)\left( {\frac{{ - 3}}{4} + 3} \right)}} = \frac{1}{{\frac{5}{4} \cdot \frac{9}{4}}} = \frac{1}{{\frac{{45}}{{16}}}} = \frac{{16}}{{45}}\)
Vậy \(0 < A < 1\).
Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:
-
A.
\(A = - 1\)
-
B.
\(A = 0\)
-
C.
\(A = 1\)
-
D.
\(A = 2\)
Đáp án : A
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - b + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {ab - ac} \right)\left( {a - b} \right) + \left( {bc - ac} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{a\left( {b - c} \right)\left( {a - b} \right) - c\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = - 1\end{array}\)
Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.
-
A.
\(x = 0\)
-
B.
\(x = 1\)
-
C.
\(x = \pm 1\)
-
D.
\(x \in \left\{ {0;2} \right\}\)
Đáp án : D
Rút gọn biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) sau đó tìm giá trị nguyên của \(x\) mẫu thức là ước của tử thức.
\(\begin{array}{l}A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\\ = \frac{{6{x^2} + 8x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\\ = \frac{{6{x^2} + 8x + 7 + x\left( {x - 1} \right) - 6\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{6{x^2} + 8x + 7 + {x^2} - x - 6{x^2} - 6x - 6}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{{x^2} + x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{1}{{x - 1}}\end{array}\)
Để \(A \in \mathbb{Z} \Leftrightarrow \frac{1}{{x - 1}} \in \mathbb{Z} \Rightarrow \left( {x - 1} \right) \in U\left( 1 \right) = \left\{ { \pm 1} \right\}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = - 1\\x - 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\,\left( {{\rm{t/m}}\,x \ne 1} \right)\)
Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Đáp án : C
Thay phép trừ bằng phép cộng với phân thức đối.
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
Điều kiện: \(\left\{ \begin{array}{l}x - 3 \ne 0\\4 - {x^2} \ne 0\\{x^3} - 3{x^2} - 4x + 12 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x \ne \pm 2\end{array} \right.\)
\(\begin{array}{l}A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\\ = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^2}\left( {x - 3} \right) - 4\left( {x - 3} \right)}}\\ = \frac{3}{{x - 3}} + \frac{{{x^2}}}{{{x^2} - 4}} - \frac{{4x - 12}}{{\left( {{x^2} - 4} \right)\left( {x - 3} \right)}}\\ = \frac{{3\left( {{x^2} - 4} \right) + {x^2}\left( {x - 3} \right) - \left( {4x - 12} \right)}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}}\\ = \frac{{3{x^2} - 12 + {x^3} - 3{x^2} - 4x + 12}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}}\\ = \frac{{{x^3} - 4x}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}} = \frac{{x\left( {{x^2} - 4} \right)}}{{\left( {x - 3} \right)\left( {{x^2} - 4} \right)}} = \frac{x}{{x - 3}} = 1 + \frac{3}{{x - 3}}\end{array}\)
Để \(A \in \mathbb{Z} \Rightarrow \frac{3}{{x - 3}} \in \mathbb{Z} \Rightarrow \left( {x - 3} \right) \in U\left( 3 \right) = \left\{ { \pm 1; \pm 3} \right\}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 3 = - 3\\x - 3 = - 1\\x - 3 = 1\\x - 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\,\left( {{\rm{t/m}}} \right)\\x = 2\,\left( {{\rm{ko}}\,\,{\rm{t/m}}} \right)\\x = 4\,\left( {{\rm{t/m}}} \right)\\x = 6\,\left( {{\rm{t/m}}} \right)\end{array} \right.\)
Vậy có 3 giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên.
Rút gọn biểu thức \(A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x}\) biết \(x > \frac{1}{2};\,x \ne 1\):
-
A.
\(\frac{1}{{2x\left( {x - 1} \right)}}\)
-
B.
\(\frac{1}{{2x\left( {x + 1} \right)}}\)
-
C.
\(\frac{2}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
-
D.
\(\frac{{2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
Đáp án : A
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x} = \frac{3}{{2x\left( {x + 1} \right)}} + \frac{{2x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{2}{x}\\ = \frac{{3\left( {x - 1} \right) + 2x\left( {2x - 1} \right) - 4\left( {x - 1} \right)\left( {x + 1} \right)}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{3x - 3 + 4{x^2} - 2x - 4{x^2} + 4}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x + 1}}{{2x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{1}{{2x\left( {x - 1} \right)}}\end{array}\)
Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)
-
A.
0
-
B.
1
-
C.
2
-
D.
-1
Đáp án : A
Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.
Điều kiện: \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right.\)
\(\begin{array}{l}A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}} = \left( {\frac{{{x^3}}}{{x - 1}} - \frac{1}{{x - 1}}} \right) - \left( {\frac{{{x^2}}}{{x + 1}} - \frac{1}{{x + 1}}} \right)\\ = \frac{{{x^3} - 1}}{{x - 1}} - \frac{{{x^2} - 1}}{{x + 1}} = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}}\\ = \left( {{x^2} + x + 1} \right) - \left( {x - 1} \right) = {x^2} + x + 1 - x + 1 = {x^2} + 2\end{array}\)
Ta có \({x^2} \ge 0\forall x \Rightarrow {x^2} + 2 \ge 2\forall x\) hay \(A \ge 2\)
Dấu “=” xảy ra \( \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\)
Vậy \(MinA = 0\) khi \(x = 0\).
Cho \(\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{...}}{{1 - {x^{16}}}}\). Số thích hợp điền vào chỗ trống là?
-
A.
16
-
B.
8
-
C.
4
-
D.
20
Đáp án : A
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{1 + x + 1 - x}}{{\left( {1 - x} \right)\left( {1 + x} \right)}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{2}{{1 - {x^2}}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{2\left( {1 + {x^2}} \right) + 2\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 + {x^2}} \right)}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{4}{{1 - {x^4}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{4\left( {1 + {x^4}} \right) + 4\left( {1 - {x^4}} \right)}}{{\left( {1 - {x^4}} \right)\left( {1 + {x^4}} \right)}} + \frac{8}{{1 + {x^8}}}\\ = \frac{8}{{1 - {x^8}}} + \frac{8}{{1 + {x^8}}} = \frac{{8\left( {1 + {x^8}} \right) + 8\left( {1 - {x^8}} \right)}}{{\left( {1 - {x^8}} \right)\left( {1 + {x^8}} \right)}} = \frac{{16}}{{1 - {x^{16}}}}\end{array}\)
Cho \(a,\,b,\,c\)thỏa mãn \(abc = 2023\). Tính giá trị biểu thức sau: \(A = \frac{{2023{\rm{a}}}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\).
-
A.
\(A = - 1\)
-
B.
\(A = 0\)
-
C.
\(A = 1\)
-
D.
\(A = 2\)
Đáp án : C
Thay \(2023 = abc\) vào biểu thức \(A\) sau đó rút gọn biểu thức \(A\).
Thay \(2023 = abc\) vào biểu thức \(A\) ta được:
\(\begin{array}{l}\frac{{2023a}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \frac{b}{{b\left( {c + 1 + ac} \right)}} + \frac{c}{{ac + 1 + c}}\\ = \frac{{ac}}{{1 + ac + c}} + \frac{1}{{c + 1 + ac}} + \frac{c}{{ac + 1 + c}} = 1\end{array}\)
Cho \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) và \(x + y + z \ne 0\). Tính giá trị của biểu thức \(A = \frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}\).
-
A.
0
-
B.
1
-
C.
2
-
D.
3
Đáp án : B
Từ điều kiện \(\frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}} = 0\) dễ dàng có được \(x + y + z = x + y + z + 0 = x + y + z + \frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}}\).
\(\begin{array}{l}x + y + z = x + y + z + 0 = x + y + z + \frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{x + z}} + \frac{{{z^2}}}{{x + y}}\\ = \left( {x + \frac{{{x^2}}}{{y + z}}} \right) + \left( {y + \frac{{{y^2}}}{{x + z}}} \right) + \left( {z + \frac{{{z^2}}}{{x + y}}} \right)\\ = x\left( {1 + \frac{x}{{y + z}}} \right) + y\left( {1 + \frac{y}{{x + z}}} \right) + z\left( {1 + \frac{z}{{x + y}}} \right)\\ = x\left( {\frac{{x + y + z}}{{y + z}}} \right) + y\left( {\frac{{x + y + z}}{{x + z}}} \right) + z\left( {\frac{{x + y + z}}{{x + y}}} \right)\\ = \left( {x + y + z} \right)\left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right)\\ \Rightarrow x + y + z = \left( {x + y + z} \right)\left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right)\\ \Rightarrow \left( {\frac{x}{{y + z}} + \frac{y}{{x + z}} + \frac{z}{{x + y}}} \right) = 1\end{array}\)
Cho ba số thực \(a,\,b,\,c\) đôi một phân biệt. Khẳng định nào sau đây là đúng?
-
A.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \le 0\)
-
B.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)
-
C.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} \ge 2\)
-
D.
\(\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} > 4\)
Đáp án : C
Sử dụng công thức \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}} = - 1\).
\(\begin{array}{l}\frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}} = {\left( {\frac{a}{{b - c}}} \right)^2} + {\left( {\frac{b}{{c - a}}} \right)^2} + {\left( {\frac{c}{{a - b}}} \right)^2}\\ = {\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\end{array}\)
(Vì \({\left( {\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}}} \right)^2} \ge 0\forall a,\,b,\,c\) đôi một khác nhau)
Mà \(\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\)
\(\begin{array}{l} = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{ab\left( {a - b} \right) + bc\left( {b - c} \right) + ac\left( {c - b + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {ab - ac} \right)\left( {a - b} \right) + \left( {bc - ac} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{a\left( {b - c} \right)\left( {a - b} \right) - c\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\\ = \frac{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = - 1\end{array}\)
\(\begin{array}{l} \Rightarrow \frac{{{a^2}}}{{{{\left( {b - c} \right)}^2}}} + \frac{{{b^2}}}{{{{\left( {c - a} \right)}^2}}} + \frac{{{c^2}}}{{{{\left( {a - b} \right)}^2}}}\\ \ge - 2\left[ {\frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ca}}{{\left( {a - b} \right)\left( {b - c} \right)}}} \right]\\ = \left( { - 2} \right)\left( { - 1} \right) = 2\end{array}\)
Luyện tập và củng cố kiến thức Bài 24: Phép nhân và phép chia phân thức đại số Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 22: Tính chất cơ bản của phân thức đại số Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 21: Phân thức đại số Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 39: Hình chóp tứ giác đều Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 38: Hình chóp tam giác đều Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 37: Hình đồng dạng Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 36: Các trường hợp đồng dạng của hai tam giác vuông Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 35: Định lí Pythagore và ứng dụng Toán 8 Kết nối tri thức