Trắc nghiệm Bài 16: Đường trung bình của tam giác Toán 8 Kết nối tri thức
Đề bài
Chọn câu đúng.
-
A.
Đường trung bình của tam giác là đường nối trung điểm ba cạnh của hình tam giác
-
B.
Đường trung bình của tam giác của tam giác là đoạn nối trung điểm hai cạnh của tam giác.
-
C.
Trong một tam giác chỉ có một đường trung bình.
-
D.
Đường trung bình của tam giác là đường nối từ một đỉnh đến trung điểm cạnh đối diện.
Cho tam giác ABC có E, F lần lượt là trung điểm của AB, BC. Phát biểu nào sau đây là đúng:
-
A.
EF có độ dài bằng hai lần BC.
-
B.
EF có độ dài bằng hai lần AB.
-
C.
EF có độ dài bằng một nửa AC.
-
D.
EF có độ dài bằng một nửa BC.
-
A.
DE
-
B.
DF
-
C.
EF
-
D.
Cả A, B, C đều đúng
Cho các khẳng định dưới đây:
1) Trong một tam giác chỉ có một đường trung bình.
2) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
3) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng cạnh ấy.
Trong các khẳng định trên, số khẳng định đúng là
-
A.
0
-
B.
1
-
C.
2
-
D.
3
Cho tam giác MNP có A, B theo thứ tự là trung điểm của NP, MN. Biết AB = 3dm. Khi đó:
-
A.
MP = 6dm
-
B.
MN = 5,5dm
-
C.
NP = 4dm
-
D.
MP = 1,5dm
Cho tam giác ABC, gọi M, N và P lần lượt là trung điểm của AB, AC và BC. Hỏi có bao nhiêu hình thang trong hình vẽ ?
-
A.
7
-
B.
6
-
C.
8
-
D.
9
Cho tam giác ABC có BC = 6cm, các đường trung tuyến BE, CD. Khi đó độ dài cạnh DE là
-
A.
12cm
-
B.
6cm
-
C.
3cm
-
D.
2cm
Cho tam giác AMN như hình vẽ dưới đây. Biết AE = EM; AF = FN; EF = 9cm độ dài đoạn thẳng MN là
-
A.
12cm
-
B.
16cm
-
C.
18cm
-
D.
5cm
Hãy chọn câu đúng?
Cho ΔABC, I, K lần lượt là trung điểm của AB và AC. Biết BC = 8 cm, AC = 7cm. Ta có:
-
A.
IK = 4cm
-
B.
IK = 4,5 cm
-
C.
IK = 3,5cm
-
D.
IK = 14cm
Cho hình vẽ dưới đây: Biết ME = EP, DN = 10cm; và DE // NP. Khi đó độ dài đoạn thẳng DM là
-
A.
10cm
-
B.
5cm
-
C.
7,5cm
-
D.
15cm
Cho tam giác ABC. Trên cạnh AB, AC lần lượt lấy các điểm E, F sao cho AE = BE, AF = FC. Khi đó \(\frac{{BC}}{{EF}}\) bằng:
-
A.
2
-
B.
1
-
C.
\(\frac{1}{2}\)
-
D.
3
Cho tam giác ABC có chu vi bằng 32cm. Gọi E, F, P là trung điểm của các cạnh AB, BC, AC. Chu vi của tam giác PFE bằng:
-
A.
17cm
-
B.
33cm
-
C.
15cm
-
D.
16cm
Cho hình vẽ dưới đây. Tìm x.
-
A.
x = 5cm
-
B.
x = 4cm
-
C.
x = 8cm
-
D.
x = 10cm
Cho tam giác đều ABC cạnh 12cm. Gọi M, N lần lượt là trung điểm của AB và AC. Chu vi tứ giác MNBC là:
-
A.
24cm
-
B.
30cm
-
C.
26cm
-
D.
48cm
Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Biết BD = 18cm. Tổng độ dài hai đoạn thẳng HE và GF là:
-
A.
18cm
-
B.
9cm
-
C.
36cm
-
D.
27cm
Cho tam giác đều ABC có chu vi bằng 30cm. Độ dài đường trung bình ứng với cạnh AB là:
-
A.
5cm
-
B.
10cm
-
C.
6cm
-
D.
8cm
Cho hình dưới đây biết AD = DB, AE = EC, GM = MB; GN = NC, GI = IM; GK = KN; BC = 28cm. Khi đó tổng DE + IK bằng:
-
A.
14cm
-
B.
28cm
-
C.
21cm
-
D.
42cm
Cho tam giác ABC . Gọi D, E, F lần lượt là trung điểm của AB, AC, BC. Chu vi tam giác DEF là 21cm. Chu vi tam giác ABC là:
-
A.
21cm
-
B.
42cm
-
C.
46cm
-
D.
24cm
Cho tam giác ABC có AB = 24cm; AC = 36cm. Kẻ BD \(\left( {D \in AC} \right)\) vuông góc với tia phân giác của góc A tại H. Gọi M là trung điểm của BC. Độ dài đoạn thẳng HM là:
-
A.
6cm
-
B.
12cm
-
C.
3cm
-
D.
8cm
Cho tam giác ABC có AC < AB; \(\widehat A = {70^o}\) . Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi I, E, F lần lượt là trung điểm của CD, AD, CB. Số đo góc BEF bằng:
-
A.
\({35^o}\)
-
B.
\({70^o}\)
-
C.
\({23^o}\)
-
D.
\({30^o}\)
Lời giải và đáp án
Chọn câu đúng.
-
A.
Đường trung bình của tam giác là đường nối trung điểm ba cạnh của hình tam giác
-
B.
Đường trung bình của tam giác của tam giác là đoạn nối trung điểm hai cạnh của tam giác.
-
C.
Trong một tam giác chỉ có một đường trung bình.
-
D.
Đường trung bình của tam giác là đường nối từ một đỉnh đến trung điểm cạnh đối diện.
Đáp án : B
Đường trung bình của tam giác của tam giác là đoạn nối trung điểm hai cạnh của tam giác.
Cho tam giác ABC có E, F lần lượt là trung điểm của AB, BC. Phát biểu nào sau đây là đúng:
-
A.
EF có độ dài bằng hai lần BC.
-
B.
EF có độ dài bằng hai lần AB.
-
C.
EF có độ dài bằng một nửa AC.
-
D.
EF có độ dài bằng một nửa BC.
Đáp án : C
E, F lần lượt là trung điểm của AB, BC nên EF là đường trung bình của tam giác ABC.
Suy ra EF có độ dài bằng một nửa của AC.
-
A.
DE
-
B.
DF
-
C.
EF
-
D.
Cả A, B, C đều đúng
Đáp án : D
Xét tam giác ABC có D, E, F lần lượt là trung điểm các cạnh AB, AC, BC nên DE, DF, EF là ba đường trung bình của tam giác ABC.
Cho các khẳng định dưới đây:
1) Trong một tam giác chỉ có một đường trung bình.
2) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
3) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng cạnh ấy.
Trong các khẳng định trên, số khẳng định đúng là
-
A.
0
-
B.
1
-
C.
2
-
D.
3
Đáp án : B
Trong các khẳng định trên, chỉ có 1 khẳng định đúng là “Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác”.
Cho tam giác MNP có A, B theo thứ tự là trung điểm của NP, MN. Biết AB = 3dm. Khi đó:
-
A.
MP = 6dm
-
B.
MN = 5,5dm
-
C.
NP = 4dm
-
D.
MP = 1,5dm
Đáp án : A
Xét tam giác MNP có:
A là trung điểm của NP
B là trung điểm của MN
Suy ra: \(AB = \frac{{MP}}{2} \Rightarrow MP = 2{\rm{A}}B = 2.3 = 6(dm)\)
Cho tam giác ABC, gọi M, N và P lần lượt là trung điểm của AB, AC và BC. Hỏi có bao nhiêu hình thang trong hình vẽ ?
-
A.
7
-
B.
6
-
C.
8
-
D.
9
Đáp án : B
Ta có: M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC.
Suy ra: MN// BC
Do đó, tứ giác MNCP, tứ giác MNPB và tứ giác MNCB là hình thang.
* Tương tự, có MP là đường trung bình của tam giác nên MP// AC
NP là đường trung bình của tam giác nên NP // AB.
Các tứ giác: MPNA, MPCA và NPBA là hình thang.
Vậy có tất cả 6 hình thang
Cho tam giác ABC có BC = 6cm, các đường trung tuyến BE, CD. Khi đó độ dài cạnh DE là
-
A.
12cm
-
B.
6cm
-
C.
3cm
-
D.
2cm
Đáp án : C
Vì BE là trung tuyến của tam giác ABC suy ra E là trung điểm của AC
Vì CD là trung tuyến của tam giác ABC suy ra D là trung điểm của AB
Xét tam giác ABC có DE là đường trung bình của tam giác ABC nên:
\(DE = \frac{1}{2}BC = \frac{1}{2}.6 = 3(cm)\)
Cho tam giác AMN như hình vẽ dưới đây. Biết AE = EM; AF = FN; EF = 9cm độ dài đoạn thẳng MN là
-
A.
12cm
-
B.
16cm
-
C.
18cm
-
D.
5cm
Đáp án : C
Vì AE = EM; AF = FN nên EF là đường trung bình của tam giác AMN
Do đó: MN = 2. EF = 2.9 = 18cm
Hãy chọn câu đúng?
Cho ΔABC, I, K lần lượt là trung điểm của AB và AC. Biết BC = 8 cm, AC = 7cm. Ta có:
-
A.
IK = 4cm
-
B.
IK = 4,5 cm
-
C.
IK = 3,5cm
-
D.
IK = 14cm
Đáp án : A
+ Vì I, K lần lượt là trung điểm của AB và AC nên IK là đường trung bình của tam giác ABC.
=> \(IK = \frac{1}{2}BC = \frac{1}{2}.8 = 4cm\)
Vậy IK = 4cm
Cho hình vẽ dưới đây: Biết ME = EP, DN = 10cm; và DE // NP. Khi đó độ dài đoạn thẳng DM là
-
A.
10cm
-
B.
5cm
-
C.
7,5cm
-
D.
15cm
Đáp án : A
Vì ME = EP và DE // NP nên DM = DN.
Lại có: DN = 10cm suy ra DM = 10cm.
Cho tam giác ABC. Trên cạnh AB, AC lần lượt lấy các điểm E, F sao cho AE = BE, AF = FC. Khi đó \(\frac{{BC}}{{EF}}\) bằng:
-
A.
2
-
B.
1
-
C.
\(\frac{1}{2}\)
-
D.
3
Đáp án : A
Vì AE = BE, AF = FC nên EF là đường trung bình của tam giác ABC.
Do đó: BC = 2.EF.
Vậy \(\frac{{BC}}{{EF}} = 2\).
Cho tam giác ABC có chu vi bằng 32cm. Gọi E, F, P là trung điểm của các cạnh AB, BC, AC. Chu vi của tam giác PFE bằng:
-
A.
17cm
-
B.
33cm
-
C.
15cm
-
D.
16cm
Đáp án : D
Vì E. F, P là trung điểm của các cạnh AB. BC, AC của tam giác ABC nên EP, PF, FE là đường trung bình của tam giác ABC
\( \Rightarrow EP = \frac{1}{2}BC;PF = \frac{1}{2}AB;F{\rm{E}} = \frac{1}{2}AC\)
\( \Rightarrow EP + PF + F{\rm{E}} = \frac{1}{2}\left( {BC + AB + AC} \right) = \frac{1}{2}.32 = 16cm\)
Cho hình vẽ dưới đây. Tìm x.
-
A.
x = 5cm
-
B.
x = 4cm
-
C.
x = 8cm
-
D.
x = 10cm
Đáp án : A
Ta có: AE = EC = 4cm (1)
Đường thẳng AC cắt hai đoạn thẳng DE, BC tạo thành hai góc đồng vị:
\(\widehat {A{\rm{ED}}} = \widehat {ECB} = {50^o}\)
Suy ra: DE // BC (2)
Từ (1) và (2) ta thấy DE đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai nên D đi qua trung điểm của cạnh AB
Do đó: AD = BD = 5cm
Hay x = 5cm
Cho tam giác đều ABC cạnh 12cm. Gọi M, N lần lượt là trung điểm của AB và AC. Chu vi tứ giác MNBC là:
-
A.
24cm
-
B.
30cm
-
C.
26cm
-
D.
48cm
Đáp án : B
Vì M là trung điểm của AB, N là trung điểm của AC nên MN là đường trung bình của tam giác ABC:
\( \Rightarrow MN = \frac{1}{2}BC = \frac{1}{{12}}.12 = 6cm\)
Mặt khác:
\(\begin{array}{l}MB = \frac{1}{2}AB = \frac{1}{2}.12 = 6cm\\NC = \frac{1}{2}.AC = \frac{1}{2}.12 = 6cm\end{array}\)
Chu vi tứ giác MNBC là:
BM + MN + NC + BC = 6 + 6 + 6 +12 = 30cm
Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Biết BD = 18cm. Tổng độ dài hai đoạn thẳng HE và GF là:
-
A.
18cm
-
B.
9cm
-
C.
36cm
-
D.
27cm
Đáp án : A
Xét tam giác ABD có H là trung điểm của AD, E là trung điểm của AB
\( \Rightarrow HE\) là đường trung bình của tam giác ABD
\( \Rightarrow HE = \frac{1}{2}B{\rm{D}} = \frac{1}{2}.18 = 9cm\)
Xét tam giác CBD có F là trung điểm của BC, G là trung điểm của CD
\( \Rightarrow GF\) là đường trung bình của tam giác CBD
\( \Rightarrow GF = \frac{1}{2}B{\rm{D}} = \frac{1}{2}.18 = 9cm\)
Tổng độ dài hai đoạn thẳng HE và GF là: 9 + 9 = 18cm
Cho tam giác đều ABC có chu vi bằng 30cm. Độ dài đường trung bình ứng với cạnh AB là:
-
A.
5cm
-
B.
10cm
-
C.
6cm
-
D.
8cm
Đáp án : A
Vì tam giác ABC đều nên AC = AB = BC
Mặt khác chu vi tam giác ABC bằng 30cm
Suy ra độ dài cạnh AB là 30 : 3 = 10cm
Độ dài đường trung bình ứng với cạnh AB là: \(\frac{1}{2}.10 = 5cm\) .
Cho hình dưới đây biết AD = DB, AE = EC, GM = MB; GN = NC, GI = IM; GK = KN; BC = 28cm. Khi đó tổng DE + IK bằng:
-
A.
14cm
-
B.
28cm
-
C.
21cm
-
D.
42cm
Đáp án : C
Xét tam giác ABC có: AD = DB; AE = EC
\( \Rightarrow DE\) là đường trung bình của tam giác ABC
\( \Rightarrow DE = \frac{1}{2}BC = \frac{1}{2}.28 = 14cm\)
Xét tam giác GBC có GM = MB; GN = NC
\( \Rightarrow MN\) là đường trung bình của tam giác GBC
\( \Rightarrow MN = \frac{{BC}}{2} = \frac{1}{2}.28 = 14cm\)
Xét tam giác GMN có GM = MB; GN = NC
\( \Rightarrow IK\) là đường trung bình của tam giác GMN
\( \Rightarrow IK = \frac{{MN}}{2} = \frac{1}{2}.14 = 7cm\)
Khi đó: DE + IK = 14 + 7 = 21cm
Cho tam giác ABC . Gọi D, E, F lần lượt là trung điểm của AB, AC, BC. Chu vi tam giác DEF là 21cm. Chu vi tam giác ABC là:
-
A.
21cm
-
B.
42cm
-
C.
46cm
-
D.
24cm
Đáp án : B
Vì D, E, F lần lượt là trung điểm của AB, AC, BC nên DE, EF, DF là các đường trung bình của tam giác ABC
\( \Rightarrow DE = \frac{1}{2}BC;DF = \frac{1}{2}AC;{\rm{EF = }}\frac{1}{2}AB\)
Do đó: \(DE + DF + {\rm{EF = }}\frac{1}{2}BC + \frac{1}{2}AC + \frac{1}{2}AB = \frac{1}{2}\left( {BC + AC + AB} \right)\)
Khi đó chu vi tam giác DEF bằng \(\frac{1}{2}\) chu vi tam giác ABC
Vậy chu vi tam giác ABC là: 2.21 = 42cm
Cho tam giác ABC có AB = 24cm; AC = 36cm. Kẻ BD \(\left( {D \in AC} \right)\) vuông góc với tia phân giác của góc A tại H. Gọi M là trung điểm của BC. Độ dài đoạn thẳng HM là:
-
A.
6cm
-
B.
12cm
-
C.
3cm
-
D.
8cm
Đáp án : A
Vì AH là tia phân giác của goác BAC, AH vuông góc BD nên tam giác cân tại A.
\( \Rightarrow AB = A{\rm{D}} = 24cm\)
Do tam giác ABD cân tại A nên AH là đường phân giác đồng thời là đường trung tuyến của tam giác ABD
Suy ra H là trung điểm của BD
Ta có: DC = AC – AD = 36 – 24 = 12cm
Xét tam giác BDC, ta có H là trung điểm của BD , M là trung điểm của BC nên HM là đường trung bình của tam giác BDC
\( \Rightarrow HM = \frac{1}{2}DC = \frac{1}{2}.12 = 6cm\)
Cho tam giác ABC có AC < AB; \(\widehat A = {70^o}\) . Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi I, E, F lần lượt là trung điểm của CD, AD, CB. Số đo góc BEF bằng:
-
A.
\({35^o}\)
-
B.
\({70^o}\)
-
C.
\({23^o}\)
-
D.
\({30^o}\)
Đáp án : A
Xét tam giác ADC có E là trung điểm của AD, I là trung điểm của CD
Suy ra: EI là đường trung bình của tam giác ADC
Do đó \(EI//AC\)
Nên \(\widehat {IE{\rm{D}}} = \widehat A = {70^o}\) (đồng vị) và \(EI = \frac{{AC}}{2}\)
Tương tự: FI là đường trung bình của tam giác CBD
Suy ra FI //BD; \(FI = \frac{{B{\rm{D}}}}{2}\)
Do đó \(\widehat {{F_1}} = \widehat {{E_1}}\) (hai góc so le trong bằng nhau)
Lại có: AC = BD (giả thiết), suy ra EI = FI
Suy ra tam giác FIE cân tại I
Do đó \(\widehat {{E_2}} = \widehat {{F_1}}\)
Suy ra \(\widehat {{E_1}} = \widehat {{E_2}} = \frac{1}{2}\widehat {IE{\rm{D}}} = \frac{1}{2}.\widehat A = \frac{1}{2}.70 = {35^o}\)
Luyện tập và củng cố kiến thức Bài 17: Tính chất đường phân giác của tam giác Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 15: Định lí Thalès trong tam giác Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 39: Hình chóp tứ giác đều Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 38: Hình chóp tam giác đều Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 37: Hình đồng dạng Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 36: Các trường hợp đồng dạng của hai tam giác vuông Toán 8 Kết nối tri thức
- Trắc nghiệm Bài 35: Định lí Pythagore và ứng dụng Toán 8 Kết nối tri thức