Đề bài

Hãy tìm giá trị nhỏ nhất của biểu thức sau: \(A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}}\)

  • A.
    0
  • B.
    1
  • C.
    2
  • D.
    -1
Phương pháp giải

Muốn trừ hai phân thức có cùng mẫu thức ta trừ các tử thức và giữ nguyên mẫu thức.

Lời giải của GV Loigiaihay.com

Điều kiện: \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x \ne  - 1\end{array} \right.\)

\(\begin{array}{l}A = \frac{{{x^3}}}{{x - 1}} - \frac{{{x^2}}}{{x + 1}} - \frac{1}{{x - 1}} + \frac{1}{{x + 1}} = \left( {\frac{{{x^3}}}{{x - 1}} - \frac{1}{{x - 1}}} \right) - \left( {\frac{{{x^2}}}{{x + 1}} - \frac{1}{{x + 1}}} \right)\\ = \frac{{{x^3} - 1}}{{x - 1}} - \frac{{{x^2} - 1}}{{x + 1}} = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}}\\ = \left( {{x^2} + x + 1} \right) - \left( {x - 1} \right) = {x^2} + x + 1 - x + 1 = {x^2} + 2\end{array}\)

Ta có \({x^2} \ge 0\forall x \Rightarrow {x^2} + 2 \ge 2\forall x\) hay \(A \ge 2\)

Dấu “=” xảy ra \( \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\)

Vậy \(MinA = 0\) khi \(x = 0\).

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:

Xem lời giải >>
Bài 2 :

Chọn khẳng định đúng?

Xem lời giải >>
Bài 3 :

Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:

Xem lời giải >>
Bài 4 :

Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne  - 2} \right)\)

Xem lời giải >>
Bài 5 :

Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)

Xem lời giải >>
Bài 6 :

Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?

Xem lời giải >>
Bài 7 :

Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:

Xem lời giải >>
Bài 8 :

Chọn câu đúng?

Xem lời giải >>
Bài 9 :

Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)

Xem lời giải >>
Bài 10 :

Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:

Xem lời giải >>
Bài 11 :

Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)

Xem lời giải >>
Bài 12 :

Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne  \pm 3} \right)\)

Xem lời giải >>
Bài 13 :

Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)

Xem lời giải >>
Bài 14 :

Cho \(x;\,y;\,z\, \ne  \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?

Xem lời giải >>
Bài 15 :

Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)

Xem lời giải >>
Bài 16 :

Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).

Xem lời giải >>
Bài 17 :

Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x =  - \frac{3}{4}\)?

Xem lời giải >>
Bài 18 :

Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:

Xem lời giải >>
Bài 19 :

Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.

Xem lời giải >>
Bài 20 :

Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?

Xem lời giải >>