Trắc nghiệm Bài 1: Đơn thức và đa thức nhiều biến Toán 8 Chân trời sáng tạo
Đề bài
Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:
-
A.
Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
-
B.
Nếu \(A = 0\) thì \(x = y = z = 0\).
-
C.
Chỉ có 1 giá trị của \(x\) để \(A = 0\).
-
D.
Chỉ có 1 giá trị của \(y\) để \(A = 0\).
Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).
-
A.
a = 9.
-
B.
a = 1.
-
C.
a = 3.
-
D.
a = 2.
Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
-
A.
\(59{x^5}{y^4}\).
-
B.
\(49{x^5}{y^4}\).
-
C.
\(65{x^5}{y^4}\).
-
D.
\(17{x^5}{y^4}\).
Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).
-
A.
\(10\).
-
B.
\(20\).
-
C.
\( - 40\).
-
D.
\(40\).
Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:
-
A.
\(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
-
B.
\({a^5}{x^3}{y^3}\).
-
C.
\(\frac{{27}}{8}{a^5}\).
-
D.
\({x^3}{y^3}\).
Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:
-
A.
\( - 1500\).
-
B.
\( - 750\).
-
C.
30
-
D.
1500
Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:
-
A.
\(\frac{{7}}{{2}}{x^4}{y^3}\).
-
B.
\(\frac{1}{2}{x^3}{y^3}\).
-
C.
\(-\frac{{7}}{{2}}{x^4}{y^3}\).
-
D.
\( - \frac{1}{2}{x^2}{y^2}\).
Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là
-
A.
\( - 21{y^2}z\).
-
B.
\( - 3{y^2}z\).
-
C.
\(3{y^4}{z^2}\).
-
D.
\(3{y^2}z\).
Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là
-
A.
\(10{x^2}{y^4}\).
-
B.
\(9{x^2}{y^4}\).
-
C.
\( - 9{x^2}{y^4}\).
-
D.
\( - 4{x^2}{y^4}\).
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:
-
A.
0; 1; 3; 4.
-
B.
0; 3; 1; 4.
-
C.
0; 1; 2; 3.
-
D.
0; 1; 3; 2.
Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.
-
A.
\(a{b^2}{x^2}yz\).
-
B.
\({x^2}y\).
-
C.
\({x^2}yz\).
-
D.
\(100ab\).
Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.
-
A.
\( - 36\).
-
B.
\( - 36{a^2}{b^2}\).
-
C.
\(36{a^2}{b^2}\).
-
D.
\( - 36{a^2}\).
Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:
-
A.
\( - 6{x^3}{y^3}\).
-
B.
\(6{x^3}{y^3}\).
-
C.
\(6{x^3}{y^2}\).
-
D.
\( - 6{x^2}{y^3}\).
Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).
-
A.
\(2\).
-
B.
\(3\).
-
C.
\(4\).
-
D.
\(5\).
Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?
-
A.
2.
-
B.
\(5x + 9\).
-
C.
\({x^3}{y^2}\).
-
D.
\(3x\).
Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)
-
A.
6
-
B.
8
-
C.
12
-
D.
0
Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.
-
A.
a = 2
-
B.
a = 0
-
C.
a = -2
-
D.
a = 1
: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại
x = y = -2.
-
A.
64a + 8b + 4c
-
B.
-64a – 8b – 4c
-
C.
64a – 8b + 8c
-
D.
64a – 8b + 4c
Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:
-
A.
Q = 0
-
B.
Q > 0
-
C.
Q < 0
-
D.
Không xác định được
Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:
-
A.
2
-
B.
1
-
C.
3
-
D.
0
Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
-
A.
0
-
B.
1
-
C.
-1
-
D.
0 và 1
Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)
-
A.
\(P = {x^2} - 12{{x}}y\)
-
B.
\(P = {x^2} + 10{y^2}\)
-
C.
\(P = - {x^2} - 12{{x}}y + 10{y^2}\)
-
D.
\(P = 12{{x}}y + 10{y^2}\)
Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008
-
A.
\({20092008^4}\)
-
B.
\({20082009^4}\)
-
C.
-5
-
D.
5
\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:
-
A.
10
-
B.
1
-
C.
-1
-
D.
11
Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:
-
A.
\(Q = 3{{{x}}^4}\)
-
B.
\(Q = 3{{{x}}^4} - 4\)
-
C.
\(Q = - 3{{{x}}^4} - 4\)
-
D.
\(Q = 2{{{x}}^4} + 4\)
Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)
-
A.
\(7{{{x}}^2} - 6{{x}} + 16\)
-
B.
\(3{{{x}}^2} + 2\)
-
C.
\(3{{{x}}^2} + 6{{x}} + 16\)
-
D.
\(7{{{x}}^2} + 2\)
Thu gọn đa thức \(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:
-
A.
\(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
-
B.
\(M = 12{{x}}{y^2}\)
-
C.
\(M = - 2{{x}}{y^2}\)
-
D.
\(M = - 6{{{x}}^2}y - 2{{x}}{y^2}\)
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
-
A.
8
-
B.
-8
-
C.
-13
-
D.
10
Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:
-
A.
-1 và 2
-
B.
-1 và 0
-
C.
1 và 0
-
D.
2 và 0
Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):
-
A.
5; 3; 1.
-
B.
8; 2; -7.
-
C.
13; 4; -6; 1.
-
D.
8; 2; -7; 1.
Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:
-
A.
4.
-
B.
5.
-
C.
6.
-
D.
7.
Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
-
B.
\(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
-
C.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
-
D.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)
Lời giải và đáp án
Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:
-
A.
Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
-
B.
Nếu \(A = 0\) thì \(x = y = z = 0\).
-
C.
Chỉ có 1 giá trị của \(x\) để \(A = 0\).
-
D.
Chỉ có 1 giá trị của \(y\) để \(A = 0\).
Đáp án : A
Ta xét dấu của các hệ số và các biến.
\({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\,\,\, \Rightarrow \,\,{x^2}{y^4}{z^6} \ge 0\)với mọi \(x;\,y;\,z.\)
\(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\,\,\,\left( {a \ne 0} \right).\)
Ta có: \(2{a^2} + \frac{1}{{{a^2}}} > 0\)với \(a \ne 0.\)
Lại có: \({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\,\,\, \Rightarrow \,\,{x^2}{y^4}{z^6} \ge 0\)với mọi \(x;\,y;\,z.\)
Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).
-
A.
a = 9.
-
B.
a = 1.
-
C.
a = 3.
-
D.
a = 2.
Đáp án : C
Thực hiện cộng các đơn thức rồi cho kết quả hệ số bằng 6. Từ đó tìm ra hằng số a
Ta có \(ax{y^3} + \left( { - 4xy^3} \right) + 7x{y^3} = \left( {a - 4 + 7} \right)x{y^3}\)
Từ giả thiết suy ra:
\(a + 3 = 6 \\ a = 6 - 3 \\ a = 3\)
Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
-
A.
\(59{x^5}{y^4}\).
-
B.
\(49{x^5}{y^4}\).
-
C.
\(65{x^5}{y^4}\).
-
D.
\(17{x^5}{y^4}\).
Đáp án : C
Thu gọn các đơn thức nhỏ trong biểu thức đại số rồi mới tiến hằng cộng, trừ các đơn thức đồng dạng.
Áp dụng các công thức \({\left( {{a^m}} \right)^n} = {a^{m.n}}\), \({a^m}.{a^n} = {a^{m + n}}\), \({\left( {x.y} \right)^n} = {x^n}.{y^m}\).
Ta có:
\(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
\( = 9{\left( {{x^2}} \right)^2}{\left( {{y^2}} \right)^2}x - {\left( { - 2} \right)^3}{x^3}{y^3}{x^2}y + {3.2^4}{x^4}x{y^4}\)
\( = 9{x^4}{y^4}x - \left( { - 8} \right){x^3}{y^3}{x^2}y + 48{x^4}x{y^4}\)
\( = 9{x^5}{y^4} + 8{x^5}{y^4} + 48{x^5}{y^4}\)
\( = \left( {9 + 8 + 48} \right){x^5}{y^4}\)
\( = 65{x^5}{y^4}\).
Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).
-
A.
\(10\).
-
B.
\(20\).
-
C.
\( - 40\).
-
D.
\(40\).
Đáp án : C
Thay \(x = - 1\), \(y = - 1\), \(z = - 2\) vào đơn thức \(5{x^4}{y^2}{z^3}\) ta được: \(5.{\left( { - 1} \right)^4}.{\left( { - 1} \right)^2}.{\left( { - 2} \right)^3} = - 40.\)
Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:
-
A.
\(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
-
B.
\({a^5}{x^3}{y^3}\).
-
C.
\(\frac{{27}}{8}{a^5}\).
-
D.
\({x^3}{y^3}\).
Đáp án : D
\(\begin{array}{l}{\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right) = \frac{{{a^2}}}{{16}}.3xy.4{a^2}{x^2}.\frac{9}{2}a{y^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{{a^2}}}{{16}}.3.4{a^2}.\frac{9}{2}a} \right).{x^3}{y^3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{27}}{8}{a^5}{x^3}{y^3}.\end{array}\)
Phần biến số của đơn thức đã cho là: \({x^3}{y^3}.\)
Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:
-
A.
\( - 1500\).
-
B.
\( - 750\).
-
C.
30
-
D.
1500
Đáp án : D
Ta có:
\(\begin{array}{l}{\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3} \\= 4{x^4}.\left( { - 3{y^3}} \right).\left( { - 125{x^3}{z^3}} \right)\\= 4.\left( { - 3} \right).\left( { - 125} \right).{x^4}.{x^3}.{y^3}.{z^3}\\= 1500{x^7}{y^3}{z^3}.\end{array}\)
Hệ số của đơn thức đã cho là \(1500.\)
Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:
-
A.
\(\frac{{7}}{{2}}{x^4}{y^3}\).
-
B.
\(\frac{1}{2}{x^3}{y^3}\).
-
C.
\(-\frac{{7}}{{2}}{x^4}{y^3}\).
-
D.
\( - \frac{1}{2}{x^2}{y^2}\).
Đáp án : A
Ta có:
\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right) = \left[ {\frac{5}{4}.\left( { - \frac{6}{5}} \right).\left( {\frac{{ - 7}}{3}} \right)} \right]\left( {{x^2}.x.x} \right).\left( {y.y.y} \right) = \frac{{7}}{{2}}{x^4}{y^3}.\)
Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là
-
A.
\( - 21{y^2}z\).
-
B.
\( - 3{y^2}z\).
-
C.
\(3{y^4}{z^2}\).
-
D.
\(3{y^2}z\).
Đáp án : D
\( - 9{y^2}z - \left( { - 12{y^2}z} \right) = \left( { - 9 + 12} \right){y^2}z\)\( = 3{y^2}z\).
Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là
-
A.
\(10{x^2}{y^4}\).
-
B.
\(9{x^2}{y^4}\).
-
C.
\( - 9{x^2}{y^4}\).
-
D.
\( - 4{x^2}{y^4}\).
Đáp án : A
\(3{x^2}{y^4} + 7{x^2}{y^4} = \left( {3 + 7} \right){x^2}{y^4} = 10{x^2}{y^4}\)
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:
-
A.
0; 1; 3; 4.
-
B.
0; 3; 1; 4.
-
C.
0; 1; 2; 3.
-
D.
0; 1; 3; 2.
Đáp án : A
Đơn thức\( - 10\)có bậc là \(0\).
Đơn thức \(\frac{1}{3}x\) có bậc là \(1.\)
Đơn thức\(2{x^2}y\) có bậc là \(2 + 1 = 3.\)
Đơn thức\(5{x^2}.{x^2} = 5{x^4}\) có bậc là \(4.\)
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là: 0; 1; 3; 4.
Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.
-
A.
\(a{b^2}{x^2}yz\).
-
B.
\({x^2}y\).
-
C.
\({x^2}yz\).
-
D.
\(100ab\).
Đáp án : C
Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.
-
A.
\( - 36\).
-
B.
\( - 36{a^2}{b^2}\).
-
C.
\(36{a^2}{b^2}\).
-
D.
\( - 36{a^2}\).
Đáp án : B
Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:
-
A.
\( - 6{x^3}{y^3}\).
-
B.
\(6{x^3}{y^3}\).
-
C.
\(6{x^3}{y^2}\).
-
D.
\( - 6{x^2}{y^3}\).
Đáp án : A
Ta có: \(2.\left( { - 3{x^3}y} \right){y^2} = 2.\left( { - 3} \right).{x^3}.y.{y^2} = - 6{x^3}{y^3}\).
Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).
-
A.
\(2\).
-
B.
\(3\).
-
C.
\(4\).
-
D.
\(5\).
Đáp án : B
Sử dụng định nghĩa đơn thức đồng dạng: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\)và có cùng phần biến. Các số khác \(0\) được coi là những đơn thức đồng dạng.
Có ba nhóm đơn thức đồng dạng trong các đơn thức đã cho gồm :
Nhóm thứ nhất : \( - \frac{2}{3}{x^3}y\), \(2{x^3}y\).
Nhóm thứ hai: \(5{x^2}y\), \(\frac{1}{2}{x^2}y\).
Nhóm thứ ba: \( - x{y^2}\), \(6x{y^2}\).
\( \frac {3}{4} \) không có đơn thức nào đồng dạng.
Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?
-
A.
2.
-
B.
\(5x + 9\).
-
C.
\({x^3}{y^2}\).
-
D.
\(3x\).
Đáp án : B
Sử dụng định nghĩa đơn thức: Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.
Theo định nghĩa đơn thức thì \(5x + 9\) không là đơn thức.
Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)
-
A.
6
-
B.
8
-
C.
12
-
D.
0
Đáp án : C
\(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2} = (3{{{x}}^4} + 3{{{x}}^2}{y^2}) + (2{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}) = 3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right)\)
Mà \({x^2} + {y^2} = 2\) nên ta có: \(3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right) = 6{{{x}}^2} + 6{y^2} = 6\left( {{x^2} + {y^2}} \right) = 6.2 = 12\)
Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.
-
A.
a = 2
-
B.
a = 0
-
C.
a = -2
-
D.
a = 1
Đáp án : C
Ta có:
\(\begin{array}{l}4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\\ = \left( {4{{{x}}^5}{y^2} + 2{{a}}{{{x}}^5}{y^2}} \right) + \left( { - 5{{{x}}^3}y + 7{{{x}}^3}y} \right)\\ = \left( {4 + 2{{a}}} \right){x^5}{y^2} + 2{{{x}}^3}y\end{array}\)
Để bậc của đa thức đã cho bằng 4 thì hệ số của \({x^5}{y^2}\) phải bằng 0 (vì nếu hệ số của \({x^5}{y^2}\) khác 0 thì đa thức có bậc là 5 + 2 = 7.
Do đó \(4 + 2{{a}} = 0 \) suy ra \( a = - 2\)
: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại
x = y = -2.
-
A.
64a + 8b + 4c
-
B.
-64a – 8b – 4c
-
C.
64a – 8b + 8c
-
D.
64a – 8b + 4c
Đáp án : D
\(\begin{array}{l}A = a.{\left( { - 2} \right)^3}.{\left( { - 2} \right)^3} + b.{\left( { - 2} \right)^2}.\left( { - 2} \right) + c.\left( { - 2} \right).\left( { - 2} \right)\\A = a.\left( { - 8} \right).\left( { - 8} \right) + b.4.\left( { - 2} \right) + c.4\\A = 64{{a}} - 8b + 4c\end{array}\)
Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:
-
A.
Q = 0
-
B.
Q > 0
-
C.
Q < 0
-
D.
Không xác định được
Đáp án : B
\(\begin{array}{l}{x^2}{y^3} > 0\\2{{{x}}^2} > 0\\4 > 0\end{array}\)
Suy ra \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4 > 0\)
Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:
-
A.
2
-
B.
1
-
C.
3
-
D.
0
Đáp án : D
Ta có:
\(\begin{array}{l}\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\\ = {x^2} + {y^2} - 2{{x}}y - {x^2} - {y^2} - 2{{x}}y + 4{{x}}y - 1\\ = \left( {{x^2} - {x^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 4{{x}}y + 4{{x}}y} \right) - 1 = - 1\end{array}\)
Bậc của -1 là 0
Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
-
A.
0
-
B.
1
-
C.
-1
-
D.
0 và 1
Đáp án : A
Ta có:
\(\begin{array}{l}Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\\Q = 8{{{x}}^{n + 2}} + 8{{{x}}^n} = 8{{{x}}^n}\left( {{x^2} + 1} \right)\end{array}\)
Vì \({x^2} + 1 > 0\) với mọi x nên \(Q = 0 \) khi \(8{{{x}}^n}\left( {{x^2} + 1} \right) = 0 \) hay \(x = 0\)
Vậy x = 0 thì Q = 0
Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)
-
A.
\(P = {x^2} - 12{{x}}y\)
-
B.
\(P = {x^2} + 10{y^2}\)
-
C.
\(P = - {x^2} - 12{{x}}y + 10{y^2}\)
-
D.
\(P = 12{{x}}y + 10{y^2}\)
Đáp án : A
\(\begin{array}{l}P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\\P = 3{{{x}}^2} - 6{{x}}y - 5{y^2} - 2{{{x}}^2} - 6{{x}}y + 5{y^2}\\P = {x^2} - 12{{x}}y\end{array}\)
Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008
-
A.
\({20092008^4}\)
-
B.
\({20082009^4}\)
-
C.
-5
-
D.
5
Đáp án : D
Thay giá trị x = -1; y = 20092008 vào biểu thức \( - 5{{{x}}^3}\) ta được:
\( - 5.{\left( { - 1} \right)^3} = 5\)
\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:
-
A.
10
-
B.
1
-
C.
-1
-
D.
11
Đáp án : C
Ta tìm các giá trị của x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) sau đó thay vào biểu thức.
Vì \(2{{{x}}^2} + 7 > 0\) với mọi x nên ta có:
\(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) khi \( x + 2 = 0 \), do đó \(x = - 2\)
Thay x = -2 vào biểu thức \({x^3} - 3{{x}} + 1\) ta được:
\({\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1\)
Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:
-
A.
\(Q = 3{{{x}}^4}\)
-
B.
\(Q = 3{{{x}}^4} - 4\)
-
C.
\(Q = - 3{{{x}}^4} - 4\)
-
D.
\(Q = 2{{{x}}^4} + 4\)
Đáp án : D
Thay \(y = x{;^{}}z = {x^2}\) vào đa thức Q rồi tính
Công thức lũy thừa \({\left( {{x^n}} \right)^m} = {x^{n.m}}\)
\(Q = 3{{{x}}^4} + 2{{{x}}^4} - 3{\left( {{x^2}} \right)^2} + 4 = 3{{{x}}^4} + 2{{{x}}^4} - 3{{{x}}^4} + 4 = 2{{{x}}^4} + 4\)
Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)
-
A.
\(7{{{x}}^2} - 6{{x}} + 16\)
-
B.
\(3{{{x}}^2} + 2\)
-
C.
\(3{{{x}}^2} + 6{{x}} + 16\)
-
D.
\(7{{{x}}^2} + 2\)
Đáp án : B
\(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right) \)
\(= 5{{{x}}^2} - 3{{x}} + 9 - 2{{{x}}^2} + 3{{x}} - 7 \)
\(= \left(5{{{x}}^2} - 2{{{x}}^2} \right) + \left(- 3{{x}} + 3{{x}} \right) + (9 - 7)\)
\(= 3{{{x}}^2} + 2\)
Thu gọn đa thức \(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:
-
A.
\(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
-
B.
\(M = 12{{x}}{y^2}\)
-
C.
\(M = - 2{{x}}{y^2}\)
-
D.
\(M = - 6{{{x}}^2}y - 2{{x}}{y^2}\)
Đáp án : C
Nhóm các đơn thức đồng dạng với nhau
Ta có:
\(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2} = \left( { - 3{{{x}}^2}y + 3{{{x}}^2}y} \right) + \left( { - 7{{x}}{y^2} + 5{{x}}{y^2}} \right) = - 2{{x}}{y^2}\)
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
-
A.
8
-
B.
-8
-
C.
-13
-
D.
10
Đáp án : B
Ta có: \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2} = 8{{{x}}^3}{y^2}\)
Thay x = -1; y = 1 vào biểu thức \(8{{{x}}^3}{y^2}\) ta có: \(-8.{\left( { - 1} \right)^3}{.1^2} = - 8\)
Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:
-
A.
-1 và 2
-
B.
-1 và 0
-
C.
1 và 0
-
D.
2 và 0
Đáp án : C
Thu gọn đa thức rồi xác định hệ số cao nhất và hệ số tự do.
Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất.
Ta có: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3} = {x^4} - 2{{{x}}^3} + 2{{{x}}^2}\) có hệ số cao nhất là 1 và hệ số tự do là 0
Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):
-
A.
5; 3; 1.
-
B.
8; 2; -7.
-
C.
13; 4; -6; 1.
-
D.
8; 2; -7; 1.
Đáp án : D
Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:
-
A.
4.
-
B.
5.
-
C.
6.
-
D.
7.
Đáp án : D
\({x^2}{y^5}\) có bậc là 7.
\({x^2}{y^4}\) có bậc là 6
\({y^6}\) có bậc là 6
1 có bậc là 0
Vậy đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) có bậc là 7
Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
-
B.
\(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
-
C.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
-
D.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)
Đáp án : A
Luyện tập và củng cố kiến thức Bài 2: Các phép toán với đa thức nhiều biến Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Hằng đẳng thức đáng nhớ Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Phân tích đa thức thành nhân tử Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Phân thức đại số Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Cộng, trừ phân thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 7: Nhân, chia phân thức Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 2: Xác suất lí thuyết và xác suất thực nghiệm Toán 8 Chân trời sáng tạo
- Trắc nghiệm Bài 1: Mô tả xác suất bằng tỉ số Toán 8 Chân trời sáng tạo
- Trắc nghiệm Bài 4: Hai hình đồng dạng Toán 8 Chân trời sáng tạo
- Trắc nghiệm Bài 3: Các trường hợp đồng dạng của hai tam giác vuông Toán 8 Chân trời sáng tạo
- Trắc nghiệm Bài 2: Các trường hợp đồng dạng của hai tam giác Toán 8 Chân trời sáng tạo