Đề bài

Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)

  • A.
    6
  • B.
    8
  • C.
    12
  • D.
    0
Phương pháp giải
Biến đổi đa thức Q để có \({x^2} + {y^2}\)
Lời giải của GV Loigiaihay.com
Ta có:

\(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2} = (3{{{x}}^4} + 3{{{x}}^2}{y^2}) + (2{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}) = 3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right)\)

Mà \({x^2} + {y^2} = 2\) nên ta có: \(3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right) = 6{{{x}}^2} + 6{y^2} = 6\left( {{x^2} + {y^2}} \right) = 6.2 = 12\)

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.

Xem lời giải >>
Bài 2 :

Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:

Xem lời giải >>
Bài 3 :

Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):

Xem lời giải >>
Bài 4 :

Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) =  - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:

Xem lời giải >>
Bài 5 :

Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:

Xem lời giải >>
Bài 6 :

Thu gọn đa thức \(M =  - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:

Xem lời giải >>
Bài 7 :

Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)

Xem lời giải >>
Bài 8 :

Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:

Xem lời giải >>
Bài 9 :

\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:

Xem lời giải >>
Bài 10 :

Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008

Xem lời giải >>
Bài 11 :

Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)

Xem lời giải >>
Bài 12 :

Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)

Xem lời giải >>
Bài 13 :

Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:

Xem lời giải >>
Bài 14 :

Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:

Xem lời giải >>
Bài 15 :

: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại

x = y = -2.

Xem lời giải >>
Bài 16 :

Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.

Xem lời giải >>