Bài 5 trang 139 Tài liệu dạy – học Toán 9 tập 2


Đề bài

Tìm giá trị của a và b để đường thẳng (d): y = (2b – a)x – 3(a+5b) đi qua hai điểm:

a) A(2 ; 4) và B(-1 ; 3)

b) M(2 ; 1) và N(1 ; -2)

Phương pháp giải - Xem chi tiết

Thay lần lượt tọa độ các điểm mà đường thẳng đi qua vào đường thẳng, giải hệ phương trình tìm a, b.

Lời giải chi tiết

a) \(A\left( {2;4} \right) \in d \Rightarrow 4 = \left( {2b - a} \right).2 - 3\left( {a + 5b} \right) \)

\(\Leftrightarrow 4 = 4b - 2a - 3a - 15b \)

\(\Leftrightarrow  - 5a - 11b = 4\,\,\,\left( 1 \right)\)

\(B\left( { - 1;3} \right) \in d \Rightarrow 3 = \left( {2b - a} \right)\left( { - 1} \right) - 3\left( {a + 5b} \right) \)

\(\Leftrightarrow 3 =  - 2b + a - 3a - 15b \)

\(\Leftrightarrow  - 2a - 17b = 3\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình

\(\begin{array}{l}\left\{ \begin{array}{l} - 5a - 11b = 4\\ - 2a - 17b = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 10a - 22b = 8\\ - 10a - 85b = 15\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}63b =  - 7\\ - 5a - 11b = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b =  - \dfrac{1}{9}\\ - 5a - 11.\dfrac{{ - 1}}{9} = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b =  - \dfrac{1}{9}\\5a = \dfrac{{ - 25}}{9}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - \dfrac{1}{9}\\a = \dfrac{{ - 5}}{9}\end{array} \right.\end{array}\)

Vậy \(a =  - \dfrac{5}{9};\,\,b =  - \dfrac{1}{9}\).

b) \(M\left( {2;1} \right) \in d \Rightarrow 1 = \left( {2b - a} \right).2 - 3\left( {a + 5b} \right)\)

\(\Leftrightarrow 1 = 4b - 2a - 3a - 15b\)

\(\Leftrightarrow  - 5a - 11b = 1\,\,\,\left( 1 \right)\)

\(N\left( {1; - 2} \right) \in d \Rightarrow  - 2 = \left( {2b - a} \right).1 - 3\left( {a + 5b} \right) \)

\(\Leftrightarrow  - 2 = 2b - a - 3a - 15b\)

\(\Leftrightarrow  - 4a - 13b =  - 2\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình

\(\begin{array}{l}\left\{ \begin{array}{l} - 5a - 11b = 1\\ - 4a - 13b =  - 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 20a - 44b = 4\\ - 20a - 65b =  - 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}21b = 14\\ - 5a - 11b = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\ - 5a - 11.\dfrac{2}{3} = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\5a = \dfrac{{ - 25}}{3}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\a = \dfrac{{ - 5}}{3}\end{array} \right.\end{array}\)

Vậy \(a =  - \dfrac{5}{3};\,\,b = \dfrac{2}{3}\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm – Đại số 9

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài