Bài 4 trang 24 SGK Toán 11 tập 2 – Cánh Diều


Một hộp có 12 viên bi có cùng kích thước và khối lượng, trong đó có 7 viên bi màu xanh và 5 viên bi màu vàng.

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Một hộp có 12 viên bi có cùng kích thước và khối lượng, trong đó có 7 viên bi màu xanh và 5 viên bi màu vàng. Chọn ngẫu nhiên 5 viên bi từ hộp đó. Tính xác suất để trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng.

Phương pháp giải - Xem chi tiết

 Dùng quy tắc chỉnh hợp để tìm số phần tử của không gian mẫu và tập hợp cần tìm

Lời giải chi tiết

-         Số phần tử của không gian mẫu là: \(\Omega  = C_{12}^5 = 792\)

-         Số cách lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là:

+ Lấy 2 viên bi màu vàng và 3 viên màu xanh: \(C_5^2.C_7^3 = 350\)

+ Lấy 3 viên bi màu vàng và 2 viên màu xanh: \(\left( {C_5^3} \right).\left( {C_7^2} \right) = 210\)

+ Lấy 4 viên bi màu vàng và 1 viên màu xanh: \(\left( {C_5^4} \right).\left( {C_7^1} \right) = 35\)

+ Lấy 5 viên bi màu vàng: \(C_5^5 = 1\)

⇨     Tổng số cách lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là: \(350 + 210 + 35 + 1 = 596\)

-         Xác suất để lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là:\(P = \frac{{596}}{{792}} = \frac{{149}}{{198}}\)


Bình chọn:
3.9 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí