Bài 3. Hàm số lượng giác và đồ thị Toán 11 Cánh diều

Bình chọn:
4.7 trên 103 phiếu
Lý thuyết Hàm số lượng giác và đồ thị

I. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

Xem chi tiết

Câu hỏi mở đầu trang 22

Guồng nước (hay còn gọi là cọn nước) không chỉ là công cụ phục vụ sản xuất nông nghiệp, mà đã trở thành hình ảnh quen thuộc của bản làng và là một nét văn hoá đặc trưng của đồng bào dân tộc miền núi phía Bắc.

Xem chi tiết

Giải mục 1 trang 22, 23, 24

a) Cho hàm số (fleft( x right) = {x^2}) Với (x in mathbb{R}), hãy so sánh

Xem chi tiết

Giải mục 2 trang 24, 25

Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (left( {OA,OM} right) = xleft( {rad} right)) (Hình 23). Hãy xác định (sin x).

Xem chi tiết

Giải mục 3 trang 26, 27

Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (left( {OA,OM} right) = xleft( {rad} right)) (Hình 26). Hãy xác định (cos x)

Xem chi tiết

Giải mục 4 trang 27, 28, 29

Xét tập hợp (D = mathbb{R}backslash left{ {frac{pi }{2} + kpi |,k in mathbb{Z}} right}). Với mỗi số thực (x in D), hãy nêu định nghĩa (tan x)

Xem chi tiết

Giải mục 5 trang 29, 30

Xét tập hợp (E = Rbackslash left{ {kpi |k in mathbb{Z}} right}). Với mỗi số thực (x in E), hãy nêu định nghĩ (cot x)

Xem chi tiết

Bài 1 trang 31

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn (left[ { - 2pi ;2pi } right]) để:

Xem chi tiết

Bài 2 trang 31

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng (left( { - pi ;frac{{3pi }}{2}} right)) để:

Xem chi tiết

Bài 3 trang 31

Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

Xem chi tiết

Bài 4 trang 31

Dùng đồ thị hàm số, hãy cho biết:

Xem chi tiết

Bài 5 trang 31

Xét tính chẵn, lẻ của các hàm số:

Xem chi tiết

Bài 6 trang 31

Một dao động điều hòa có phương trình li độ dao động là: (x = Acos left( {omega t + varphi } right)),

Xem chi tiết

Bài 7 trang 31

Trong bài toán mở đầu, hãy chỉ ra một số giá trị của x để ông đựng nước cách mặt nước 2m.

Xem chi tiết