Giải bài tập 5.52 trang 87 SGK Toán 12 tập 2 - Cùng khám phá>
Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là: A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\) C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) D. \(\left\{ {\begin{array}{*{
Đề bài
Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là:
A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + t}\\{z = - 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\)
Phương pháp giải - Xem chi tiết
Phương trình đường thẳng đi qua hai điểm \(M({x_1},{y_1},{z_1})\) và \(N({x_2},{y_2},{z_2})\) có dạng:
\(\left\{ {\begin{array}{*{20}{l}}{x = {x_1} + ({x_2} - {x_1})t}\\{y = {y_1} + ({y_2} - {y_1})t}\\{z = {z_1} + ({z_2} - {z_1})t}\end{array}} \right.\) với \(t \in \mathbb{R}\).
Lời giải chi tiết
* Ta có điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\).
* Vector chỉ phương của đường thẳng MN là: \(\overrightarrow {MN} = (5 - 1,5 - ( - 1),1 - ( - 1)) = (4,6,2)\)
* Thay vào phương trình đường thẳng đi qua \(M\) và song song với \(\overrightarrow {MN} \):
\(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = - 1 + 6t}\\{z = - 1 + 2t}\end{array}} \right. = \left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + 1t}\end{array}} \right.\)
Chọn C
- Giải bài tập 5.53 trang 87 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.54 trang 88 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.55 trang 88 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.56 trang 88 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.57 trang 88 SGK Toán 12 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá