Giải bài tập 5.52 trang 87 SGK Toán 12 tập 2 - Cùng khám phá


Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là: A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\) C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) D. \(\left\{ {\begin{array}{*{

Đề bài

Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là:

A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z =  - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y =  - 1 + 3t}\\{z =  - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y =  - 1 + t}\\{z =  - 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

Phương trình đường thẳng đi qua hai điểm \(M({x_1},{y_1},{z_1})\) và \(N({x_2},{y_2},{z_2})\) có dạng:

\(\left\{ {\begin{array}{*{20}{l}}{x = {x_1} + ({x_2} - {x_1})t}\\{y = {y_1} + ({y_2} - {y_1})t}\\{z = {z_1} + ({z_2} - {z_1})t}\end{array}} \right.\) với \(t \in \mathbb{R}\).

Lời giải chi tiết

* Ta có điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\).

* Vector chỉ phương của đường thẳng MN là: \(\overrightarrow {MN}  = (5 - 1,5 - ( - 1),1 - ( - 1)) = (4,6,2)\)

* Thay vào phương trình đường thẳng đi qua \(M\) và song song với \(\overrightarrow {MN} \):

\(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y =  - 1 + 6t}\\{z =  - 1 + 2t}\end{array}} \right. = \left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y =  - 1 + 3t}\\{z =  - 1 + 1t}\end{array}} \right.\)

Chọn C


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 5.53 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

    Cho hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = 2 + 3t}\\{z = 3 + 4t\quad (t \in \mathbb{R})}\end{array}} \right.\) và \({d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 4t'}\\{y = 5 + 6t'}\\{z = 7 + 8t'\quad (t' \in \mathbb{R})}\end{array}} \right.\). Trong các mệnh đề sau, mệnh đề nào đúng? A. \({d_1}\) và \({d_2}\) cắt nhau. B. \({d_1}\parallel {d_2}\). C. \({d_1} \equiv {d_2}\). D. \({d_1}\) và \({d_2}\) chéo nhau.

  • Giải bài tập 5.54 trang 88 SGK Toán 12 tập 2 - Cùng khám phá

    Phương trình mặt cầu tâm \(I(2;1; - 1)\), bán kính \(R = 2\) là: A. \({(x + 2)^2} + {(y + 1)^2} + {(z - 1)^2} = 4\). B. \({(x + 2)^2} + {(y + 1)^2} + {(z - 1)^2} = 2\). C. \({(x - 2)^2} + {(y - 1)^2} + {(z + 1)^2} = 2\). D. \({(x - 2)^2} + {(y - 1)^2} + {(z + 1)^2} = 4\).

  • Giải bài tập 5.55 trang 88 SGK Toán 12 tập 2 - Cùng khám phá

    Cho mặt cầu ((S):{x^2} + {(y - 2)^2} + {(z + 1)^2} = 6). Đường kính của ((S)) bằng: A. (3). B. (sqrt 6 ). C. (2sqrt 6 ). D. 12.

  • Giải bài tập 5.56 trang 88 SGK Toán 12 tập 2 - Cùng khám phá

    Khoảng cách từ tâm \(I\) của mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 22 = 0\) đến mặt phẳng \((\alpha ):3x - 2y + 6z + 14 = 0\) bằng: A. \(1\). B. \(2\). C. \(3\). D. \(4\).

  • Giải bài tập 5.57 trang 88 SGK Toán 12 tập 2 - Cùng khám phá

    Cho hai đường thẳng \(d:\frac{{x - 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 6}}{2}\) và \(d':\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t}\\{y = 2 - 3t}\\{z = 2 - 6t}\end{array}} \right.\) (với \(t \in \mathbb{R}\)). Khi đó \(\cos (d,d')\) bằng: A. \(\frac{{20}}{{21}}\). B. \(\frac{4}{{21}}\). C. \( - \frac{4}{{21}}\). D. \( - \frac{{20}}{{21}}\).

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí